module Cubical.Categories.Constructions.TotalCategory.More where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Cubical.Categories.Category.Base
open import Cubical.Categories.Functor
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Functor
open import Cubical.Categories.Displayed.Section.Base
open import Cubical.Categories.Constructions.TotalCategory
open import Cubical.Categories.Displayed.Instances.Terminal.Base
import Cubical.Categories.Displayed.Reasoning as HomᴰReasoning
private
variable
ℓC ℓC' ℓD ℓD' ℓE ℓE' ℓCᴰ ℓCᴰ' ℓDᴰ ℓDᴰ' ℓEᴰ ℓEᴰ' : Level
module _ {C : Category ℓC ℓC'} {Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ'} where
open Functor
open Functorᴰ
open Section
∫C-op-commute : Functor (∫C Cᴰ ^op) (∫C (Cᴰ ^opᴰ))
∫C-op-commute = intro (Fst ^opF) (Snd ^opS)