module Cubical.Categories.Displayed.Constructions.Graph.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Cubical.Foundations.Structure
open import Cubical.Categories.Category.Base
open import Cubical.Categories.Functor.Base
open import Cubical.Categories.Bifunctor
open import Cubical.Categories.Profunctor.Relator
open import Cubical.Categories.Constructions.BinProduct as BP
open import Cubical.Categories.Constructions.TotalCategory as TotalCat
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Fibration.TwoSided
open import Cubical.Categories.Displayed.HLevels
open import Cubical.Categories.Displayed.Functor
open import Cubical.Categories.Displayed.Constructions.Graph.Base
private
variable
ℓC ℓC' ℓD ℓD' ℓS : Level
open Category
open Functor
open isTwoSidedWeakFibration
open WeakLeftCartesianLift
open WeakRightOpCartesianLift
module _ {C : Category ℓC ℓC'} {D : Category ℓD ℓD'}
(R : C o-[ ℓS ]-* D)
where
open Bifunctor
private
TabR = Graph R
isTwoSidedWeakFibrationGraph
: isTwoSidedWeakFibration {C = C}{D = D} (Graph R)
isTwoSidedWeakFibrationGraph .leftLifts p f .f*p = f ⋆l⟨ R ⟩ p
isTwoSidedWeakFibrationGraph .leftLifts p f .π = sym (relSeqRId R _)
isTwoSidedWeakFibrationGraph .leftLifts p f .wkUniversal pf =
sym (profAssocL R _ _ _) ∙ pf
isTwoSidedWeakFibrationGraph .rightLifts p f .pf* = p ⋆r⟨ R ⟩ f
isTwoSidedWeakFibrationGraph .rightLifts p f .σ = relSeqLId R _
isTwoSidedWeakFibrationGraph .rightLifts p f .wkUniversal pf =
pf ∙ profAssocR R _ _ _