module Cubical.Categories.Displayed.Constructions.Reindex.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.Dependent
open import Cubical.Foundations.Transport
open import Cubical.Data.Sigma
open import Cubical.Data.Unit
open import Cubical.Categories.Category.Base
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Limits.Terminal.More
open import Cubical.Categories.Limits.BinProduct.More
open import Cubical.Categories.Functor
open import Cubical.Categories.Presheaf
open import Cubical.Categories.Presheaf.Representable.More
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Functor.More
open import Cubical.Categories.Displayed.HLevels
open import Cubical.Categories.Displayed.Constructions.Reindex.Base
import Cubical.Categories.Displayed.Reasoning as HomᴰReasoning
open import Cubical.Categories.Displayed.Fibration.Base
open import Cubical.Categories.Displayed.Presheaf
open import Cubical.Categories.Displayed.Presheaf.Constructions.Reindex
private
variable
ℓB ℓB' ℓBᴰ ℓBᴰ' ℓC ℓC' ℓCᴰ ℓCᴰ' ℓD ℓD' ℓDᴰ ℓDᴰ' ℓE ℓE' ℓEᴰ ℓEᴰ' : Level
open Category
open Functor
module _
{C : Category ℓC ℓC'} {D : Category ℓD ℓD'}
(Dᴰ : Categoryᴰ D ℓDᴰ ℓDᴰ') (F : Functor C D)
where
private
module C = Category C
module D = Category D
F*Dᴰ = reindex Dᴰ F
module R = HomᴰReasoning Dᴰ
module F*Dᴰ = Categoryᴰ F*Dᴰ
module Dᴰ = Categoryᴰ Dᴰ
hasPropHomsReindex : hasPropHoms Dᴰ → hasPropHoms (reindex Dᴰ F)
hasPropHomsReindex = λ z {c} {c'} f → z (F-hom F f)
π-FFᴰ : FullyFaithfulᴰ (π Dᴰ F)
π-FFᴰ f xᴰ yᴰ = (λ z → z) , ((λ _ → refl) , (λ _ → refl))
module _ {C : Category ℓC ℓC'} {D : Category ℓD ℓD'}
{Dᴰ : Categoryᴰ D ℓDᴰ ℓDᴰ'}
(F : Functor C D) where
CartesianLiftReindex : ∀ {c c'}{dᴰ}{f : C [ c , c' ]} →
CartesianLift Dᴰ dᴰ (F ⟪ f ⟫) →
CartesianLift (reindex Dᴰ F) dᴰ f
CartesianLiftReindex cL =
reindUEⱽ cL ◁PshIsoⱽ
(invPshIsoⱽ (reindYoReindFunc {F = F})
⋆PshIsoⱽ reindPshIsoⱽ (yoRec (C [-, _ ]) _) reindⱽFuncRepr)
isFibrationReindex
: isFibration Dᴰ
→ isFibration (reindex Dᴰ F)
isFibrationReindex isFib xᴰ f =
CartesianLiftReindex $ isFib xᴰ (F ⟪ f ⟫)