module Cubical.Categories.Displayed.Constructions.Weaken.Monoidal where
open import Cubical.Foundations.Prelude
open import Cubical.Categories.Category.Base
open import Cubical.Categories.Functor
open import Cubical.Categories.NaturalTransformation
open import Cubical.Categories.Monoidal.Base
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Functor
open import Cubical.Categories.Displayed.NaturalTransformation
open import Cubical.Categories.Displayed.NaturalTransformation.More
open import Cubical.Categories.Displayed.Monoidal.Base
open import Cubical.Categories.Displayed.Limits.Terminal
open import Cubical.Categories.Displayed.Limits.BinProduct
import Cubical.Categories.Displayed.Constructions.Weaken.Base as Wk
private
variable
ℓB ℓB' ℓC ℓC' ℓCᴰ ℓCᴰ' ℓD ℓD' ℓDᴰ ℓDᴰ' ℓE ℓE' ℓEᴰ ℓEᴰ' : Level
module _ (M : MonoidalCategory ℓC ℓC') (N : MonoidalCategory ℓD ℓD') where
open Category
open MonoidalCategoryᴰ
open Functorᴰ
open Functor
open NatTransᴰ
open NatIsoᴰ
open isIsoᴰ
open NatTrans
open NatIso
open isIso
private
module M = MonoidalCategory M
module N = MonoidalCategory N
weaken : MonoidalCategoryᴰ M ℓD ℓD'
weaken .Cᴰ = Wk.weaken M.C N.C
weaken .monstrᴰ .MonoidalStrᴰ.tenstrᴰ .TensorStrᴰ.─⊗ᴰ─ .F-obᴰ = N.─⊗─ .F-ob
weaken .monstrᴰ .MonoidalStrᴰ.tenstrᴰ .TensorStrᴰ.─⊗ᴰ─ .F-homᴰ = N.─⊗─ .F-hom
weaken .monstrᴰ .MonoidalStrᴰ.tenstrᴰ .TensorStrᴰ.─⊗ᴰ─ .F-idᴰ = N.─⊗─ .F-id
weaken .monstrᴰ .MonoidalStrᴰ.tenstrᴰ .TensorStrᴰ.─⊗ᴰ─ .F-seqᴰ = N.─⊗─ .F-seq
weaken .monstrᴰ .MonoidalStrᴰ.tenstrᴰ .TensorStrᴰ.unitᴰ = N.unit
weaken .monstrᴰ .MonoidalStrᴰ.αᴰ .transᴰ .N-obᴰ = N.α .trans .N-ob
weaken .monstrᴰ .MonoidalStrᴰ.αᴰ .transᴰ .N-homᴰ = N.α .trans .N-hom
weaken .monstrᴰ .MonoidalStrᴰ.αᴰ .nIsoᴰ xᴰ .invᴰ = N.α .nIso xᴰ .inv
weaken .monstrᴰ .MonoidalStrᴰ.αᴰ .nIsoᴰ xᴰ .secᴰ = N.α .nIso xᴰ .sec
weaken .monstrᴰ .MonoidalStrᴰ.αᴰ .nIsoᴰ xᴰ .retᴰ = N.α .nIso xᴰ .ret
weaken .monstrᴰ .MonoidalStrᴰ.ηᴰ .transᴰ .N-obᴰ = N-ob (N.η .trans)
weaken .monstrᴰ .MonoidalStrᴰ.ηᴰ .transᴰ .N-homᴰ = N-hom (N.η .trans)
weaken .monstrᴰ .MonoidalStrᴰ.ηᴰ .nIsoᴰ xᴰ .invᴰ = N.η .nIso xᴰ .inv
weaken .monstrᴰ .MonoidalStrᴰ.ηᴰ .nIsoᴰ xᴰ .secᴰ = N.η .nIso xᴰ .sec
weaken .monstrᴰ .MonoidalStrᴰ.ηᴰ .nIsoᴰ xᴰ .retᴰ = N.η .nIso xᴰ .ret
weaken .monstrᴰ .MonoidalStrᴰ.ρᴰ .transᴰ .N-obᴰ = N-ob (N.ρ .trans)
weaken .monstrᴰ .MonoidalStrᴰ.ρᴰ .transᴰ .N-homᴰ = N-hom (N.ρ .trans)
weaken .monstrᴰ .MonoidalStrᴰ.ρᴰ .nIsoᴰ xᴰ .invᴰ = N.ρ .nIso xᴰ .inv
weaken .monstrᴰ .MonoidalStrᴰ.ρᴰ .nIsoᴰ xᴰ .secᴰ = N.ρ .nIso xᴰ .sec
weaken .monstrᴰ .MonoidalStrᴰ.ρᴰ .nIsoᴰ xᴰ .retᴰ = N.ρ .nIso xᴰ .ret
weaken .monstrᴰ .MonoidalStrᴰ.pentagonᴰ = N.pentagon
weaken .monstrᴰ .MonoidalStrᴰ.triangleᴰ = N.triangle