module Cubical.Categories.Displayed.More where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.HLevels.More
open import Cubical.Data.Sigma
open import Cubical.Categories.Category.Base
open import Cubical.Categories.Isomorphism
open import Cubical.Categories.Constructions.Fiber
open import Cubical.Categories.Constructions.TotalCategory
open import Cubical.Categories.Functor
open import Cubical.Categories.Displayed.Base
private
variable
ℓC ℓC' ℓCᴰ ℓCᴰ' ℓD ℓD' ℓDᴰ ℓDᴰ' : Level
module _ {C : Category ℓC ℓC'} (Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ') where
private
module C = Category C
module Cᴰ = Fibers Cᴰ
isSetDepHomᴰ : ∀ {x y}{xᴰ yᴰ} →
isSetDep (λ (f : C [ x , y ]) → Cᴰ.Hom[ f ][ xᴰ , yᴰ ])
isSetDepHomᴰ = isSet→isSetDep (λ f → Cᴰ.isSetHomᴰ)
isSetHomᴰ' : ∀ {x y}{xᴰ}{yᴰ}
{f g : C [ x , y ]} {p q : f ≡ g}
(fᴰ : Cᴰ.Hom[ f ][ xᴰ , yᴰ ])
(gᴰ : Cᴰ.Hom[ g ][ xᴰ , yᴰ ])
(pᴰ : fᴰ Cᴰ.≡[ p ] gᴰ )
(qᴰ : fᴰ Cᴰ.≡[ q ] gᴰ )
→ ∀ i j → Cᴰ.Hom[ C.isSetHom f g p q i j ][ xᴰ , yᴰ ]
isSetHomᴰ' fᴰ gᴰ pᴰ qᴰ i j = isSetDepHomᴰ fᴰ gᴰ pᴰ qᴰ (C.isSetHom _ _ _ _) i j
CatIsoⱽ : ∀ {a} → Cᴰ.ob[ a ] → Cᴰ.ob[ a ] → Type _
CatIsoⱽ = CatIsoᴰ Cᴰ idCatIso
pathToCatIsoⱽ : ∀ {a}{aᴰ bᴰ : Cᴰ.ob[ a ]} → (aᴰ ≡ bᴰ) → CatIsoⱽ aᴰ bᴰ
pathToCatIsoⱽ {aᴰ = aᴰ} = J (λ bᴰ _ → CatIsoⱽ aᴰ bᴰ) (idᴰCatIsoᴰ Cᴰ)
CatIsoⱽ→CatIso : ∀ {a aᴰ aᴰ'}
→ CatIsoⱽ aᴰ aᴰ'
→ CatIso (Cᴰ.v[ a ]) aᴰ aᴰ'
CatIsoⱽ→CatIso isoⱽ .fst = isoⱽ .fst
CatIsoⱽ→CatIso isoⱽ .snd .isIso.inv = isoⱽ .snd .isIsoᴰ.invᴰ
CatIsoⱽ→CatIso isoⱽ .snd .isIso.sec = Cᴰ.rectify $ Cᴰ.≡out $
sym (Cᴰ.reind-filler _ _) ∙ (Cᴰ.≡in $ isoⱽ .snd .isIsoᴰ.secᴰ)
CatIsoⱽ→CatIso isoⱽ .snd .isIso.ret = Cᴰ.rectify $ Cᴰ.≡out $
sym (Cᴰ.reind-filler _ _) ∙ (Cᴰ.≡in $ isoⱽ .snd .isIsoᴰ.retᴰ)
∫CatIso : ∀ {a b aᴰ bᴰ}
→ (iso : CatIso C a b)
→ CatIsoᴰ Cᴰ iso aᴰ bᴰ
→ CatIso (∫C Cᴰ) (a , aᴰ) (b , bᴰ)
∫CatIso iso isoᴰ .fst = iso .fst , isoᴰ .fst
∫CatIso iso isoᴰ .snd .isIso.inv = iso .snd .isIso.inv , isoᴰ .snd .isIsoᴰ.invᴰ
∫CatIso iso isoᴰ .snd .isIso.sec = ΣPathP ((iso .snd .isIso.sec) , (isoᴰ .snd .isIsoᴰ.secᴰ))
∫CatIso iso isoᴰ .snd .isIso.ret = ΣPathP ((iso .snd .isIso.ret) , (isoᴰ .snd .isIsoᴰ.retᴰ))
invIsoⱽ : ∀ {a} {aᴰ aᴰ' : Cᴰ.ob[ a ]}
→ CatIsoⱽ aᴰ aᴰ' → CatIsoⱽ aᴰ' aᴰ
invIsoⱽ {a}{aᴰ}{aᴰ'} f = f .snd .isIsoᴰ.invᴰ , isisoᴰ (f .fst) (f .snd .isIsoᴰ.retᴰ) (f .snd .isIsoᴰ.secᴰ)