module Cubical.Categories.Enriched.NaturalTransformation.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Categories.Enriched.Functors.Base
open import Cubical.Categories.Functor
open import Cubical.Categories.Monoidal.Base
open import Cubical.Categories.Monoidal.Enriched
open EnrichedCategory
open Functor
private
variable
ℓV ℓV' ℓD ℓE : Level
module _
{V : MonoidalCategory ℓV ℓV'}
{C : EnrichedCategory V ℓE}
{D : EnrichedCategory V ℓD}
(F G : EnrichedFunctor V C D) where
private
module C = EnrichedCategory C
module D = EnrichedCategory D
module V = MonoidalCategory V
module F = EnrichedFunctor F
module G = EnrichedFunctor G
record EnrichedNatTrans :
Type ((ℓ-max (ℓ-max (ℓ-max ℓV ℓV') (ℓ-suc ℓE)) (ℓ-suc ℓD))) where
field
E-N-ob : ∀ (c : C.ob) → V.Hom[ V.unit , D.Hom[ F.F-ob c , G.F-ob c ] ]
E-N-hom :
∀ (c c' : C.ob) →
(V.ρ⁻¹⟨ C.Hom[ c , c' ] ⟩
V.⋆ ((F.F-hom V.⊗ₕ E-N-ob c') V.⋆ D.seq _ _ _))
≡
(V.η⁻¹⟨ C.Hom[ c , c' ] ⟩
V.⋆ (E-N-ob c V.⊗ₕ G.F-hom V.⋆ D.seq _ _ _))