module Cubical.Categories.Functors.Constant.More where
open import Cubical.Foundations.Prelude
open import Cubical.Categories.Category
open import Cubical.Categories.Functor.Base
open import Cubical.Categories.Functor.Compose
open import Cubical.Categories.Functors.Constant
private
variable
ℓB ℓB' ℓC ℓC' ℓD ℓD' : Level
open Category
open Functor
Constant-natural :
{B : Category ℓB ℓB'}{C : Category ℓC ℓC'} (D : Category ℓD ℓD') (d : ob D)
(F : Functor B C)
→ Constant B D d ≡ Constant C D d ∘F F
Constant-natural _ _ _ = Functor≡ (λ _ → refl) (λ _ → refl)