module Cubical.Categories.Instances.Thin where

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.Properties
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Function

open import Cubical.Data.Unit
open import Cubical.Data.Sigma

open import Cubical.Categories.Category
open import Cubical.Categories.HLevels
open import Cubical.Categories.Functor
open import Cubical.Categories.NaturalTransformation

private
  variable  ℓ' : Level

open Category

ThinCategory :
  (A : Type )
  (_≤_ : A  A  Type ℓ')
  (rfl :  {a}  a  a)
  (trans :  {a b c}  a  b  b  c  a  c)
  (isProp≤ :  {a b}  isProp (a  b))
   Category  ℓ'
ThinCategory A _≤_ rfl trans isProp≤ .ob = A
ThinCategory A _≤_ rfl trans isProp≤ .Hom[_,_] = _≤_
ThinCategory A _≤_ rfl trans isProp≤ .id = rfl
ThinCategory A _≤_ rfl trans isProp≤ ._⋆_ = trans
ThinCategory A _≤_ rfl trans isProp≤ .⋆IdL _ = isProp≤ _ _
ThinCategory A _≤_ rfl trans isProp≤ .⋆IdR _ = isProp≤ _ _
ThinCategory A _≤_ rfl trans isProp≤ .⋆Assoc _ _ _ = isProp≤ _ _
ThinCategory A _≤_ rfl trans isProp≤ .isSetHom = isProp→isSet $ isProp≤