module Cubical.Categories.LocallySmall.Constructions.BinProduct.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Function
open import Cubical.Data.Sigma
open import Cubical.Data.Sigma.More
open import Cubical.Categories.LocallySmall.Category.Base
open import Cubical.Categories.LocallySmall.Category.Small
open import Cubical.Categories.LocallySmall.Variables
open import Cubical.Categories.LocallySmall.Functor
open import Cubical.Categories.LocallySmall.Constructions.BinProduct.Base
open Category
open Σω
open Functor
module _
{C : Category Cob CHom-ℓ}
{D : Category Dob DHom-ℓ}
{E : Category Eob EHom-ℓ}
where
_,F_ : Functor C D → Functor C E → Functor C (D ×C E)
(F ,F G) .F-ob = λ z → F-ob F z , F-ob G z
(F ,F G) .F-hom = λ z → F-hom F z , F-hom G z
(F ,F G) .F-id = ≡-× (F-id F) (F-id G)
(F ,F G) .F-seq _ _ = ≡-× (F-seq F _ _) (F-seq G _ _)
module _
{Bob BHom-ℓ}
{B : Category Bob BHom-ℓ}
{C : Category Cob CHom-ℓ}
{D : Category Dob DHom-ℓ}
{E : Category Eob EHom-ℓ}
where
_×F_ : Functor B D → Functor C E → Functor (B ×C C) (D ×C E)
F ×F G = (F ∘F π₁ _ _) ,F (G ∘F π₂ _ _)