module Cubical.Categories.LocallySmall.Displayed.Constructions.Weaken.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Sigma
open import Cubical.Data.Sigma.More
open import Cubical.Categories.LocallySmall.Category.Base
open import Cubical.Categories.LocallySmall.Displayed.Category.Base
open import Cubical.Categories.LocallySmall.Variables
open Category
open Categoryᴰ
open Σω
module _ (C : Category Cob CHom-ℓ)(D : Category Dob DHom-ℓ) where
private
module C = CategoryNotation C
module D = CategoryNotation D
weaken : Categoryᴰ C (λ _ → Dob) _
weaken .Hom[_][_,_] = λ _ → D.Hom[_,_]
weaken .idᴰ = D.id
weaken ._⋆ᴰ_ = D._⋆_
weaken .⋆IdLᴰ = λ f → ≡-× (C.⋆IdL _) (D.⋆IdL f)
weaken .⋆IdRᴰ = λ f → ≡-× (C.⋆IdR _) (D.⋆IdR f)
weaken .⋆Assocᴰ = λ f g h → ≡-× (C.⋆Assoc _ _ _) (D.⋆Assoc f g h)
weaken .isSetHomᴰ = D.isSetHom