module Cubical.Categories.LocallySmall.Displayed.Functor.Constant where
open import Cubical.Foundations.Prelude
open import Cubical.Categories.LocallySmall.Category.Base
open import Cubical.Categories.LocallySmall.Variables
open import Cubical.Categories.LocallySmall.Functor
open import Cubical.Categories.LocallySmall.Functor.Constant
open import Cubical.Categories.LocallySmall.Displayed.Category.Base
open import Cubical.Categories.LocallySmall.Displayed.Functor.Base
open Functor
open Functorᴰ
module _
{C : Category Cob CHom-ℓ}
{D : Category Dob DHom-ℓ}
{Cᴰ : Categoryᴰ C Cobᴰ CHom-ℓᴰ}
{Dᴰ : Categoryᴰ D Dobᴰ DHom-ℓᴰ}
{d : Dob}
(dᴰ : Dobᴰ d)
where
private
module Dᴰ = Categoryᴰ Dᴰ
Constantᴰ : Functorᴰ (Constant d) Cᴰ Dᴰ
Constantᴰ .F-obᴰ = λ z → dᴰ
Constantᴰ .F-homᴰ = λ fᴰ → Categoryᴰ.idᴰ Dᴰ
Constantᴰ .F-idᴰ = refl
Constantᴰ .F-seqᴰ = λ _ _ → sym (Dᴰ.⋆IdLᴰ _)