module Cubical.Categories.LocallySmall.Functor.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Data.Sigma
open import Cubical.Data.Sigma.More
open import Cubical.Categories.LocallySmall.Category.Base
open import Cubical.Categories.LocallySmall.Category.Small
open import Cubical.Categories.LocallySmall.Variables
open import Cubical.Categories.LocallySmall.Functor.Base
open import Cubical.Categories.LocallySmall.Displayed.Category.Base
open import Cubical.Categories.LocallySmall.Displayed.Category.Notation
open Functor
module _
{C : Category Cob CHom-ℓ}
(Cᴰ : Categoryᴰ C Cobᴰ CHom-ℓᴰ)
where
private
module Cᴰ = CategoryᴰNotation Cᴰ
σ : (c : Cob) → Functor Cᴰ.v[ c ] Cᴰ.∫C
σ c .F-ob = λ z → c , z
σ c .F-hom = λ z → Category.id C , z
σ c .F-id = sym $ Cᴰ.reind-filler _ _
σ c .F-seq f g = sym $ Cᴰ.reind-filler _ _
module _ where
open CategoryVariables
_^opF : Functor C D → Functor (C ^op) (D ^op)
(F ^opF) .F-ob = F .F-ob
(F ^opF) .F-hom = F .F-hom
(F ^opF) .F-id = F .F-id
(F ^opF) .F-seq f g = F .F-seq g f