module Cubical.Categories.LocallySmall.Instances.Functor.Small where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.HLevels.More
import Cubical.Categories.Category as Small
open import Cubical.Categories.LocallySmall.Category.Base
open import Cubical.Categories.LocallySmall.NaturalTransformation.Small
open import Cubical.Categories.LocallySmall.Category.Small
open import Cubical.Categories.LocallySmall.Functor.Base
open import Cubical.Categories.LocallySmall.Variables
open Category
module _ (C : SmallCategory ℓC ℓC')(D : GloballySmallCategory Dob ℓD') where
private
module C = SmallCategory C
module D = CategoryNotation D
FUNCTOR : GloballySmallCategory (Functor C.cat D) (ℓ-max (ℓ-max ℓC ℓC') ℓD')
FUNCTOR .Hom[_,_] F G = NatTrans F G
FUNCTOR .Category.id = idTrans _
FUNCTOR .Category._⋆_ = seqTrans
FUNCTOR .Category.⋆IdL α = makeNatTransPath $ funExt λ _ → D.⋆IdL _
FUNCTOR .Category.⋆IdR α = makeNatTransPath $ funExt λ _ → D.⋆IdR _
FUNCTOR .Category.⋆Assoc α β γ = makeNatTransPath $ funExt λ _ →
D.⋆Assoc _ _ _
FUNCTOR .Category.isSetHom = isSetIso (NatTransIsoΣ _ _)
(isSetΣ
(isSetΠ (λ _ → D.isSetHom))
λ _ → isProp→isSet (isPropImplicitΠ2 (λ _ _ → isPropΠ (λ f → D.isSetHom _ _))))