module Cubical.Categories.LocallySmall.Instances.Level where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Data.Sigma.More open import Cubical.Categories.LocallySmall.Category.Base open import Cubical.Categories.LocallySmall.Category.Small open import Cubical.Categories.LocallySmall.Functor.Base open import Cubical.Categories.LocallySmall.Bifunctor.Base open import Cubical.Categories.LocallySmall.Constructions.BinProduct open import Cubical.Categories.LocallySmall.Instances.Indiscrete LEVEL : GloballySmallCategory (Liftω Level) ℓ-zero LEVEL = Indiscrete (Liftω Level) open Functor open Bifunctor ℓ-MAXBif : Bifunctor LEVEL LEVEL LEVEL ℓ-MAXBif .Bif-ob (liftω ℓ) (liftω ℓ') = liftω (ℓ-max ℓ ℓ') ℓ-MAXBif .Bif-hom× _ _ = _ ℓ-MAXBif .Bif-homL _ _ = _ ℓ-MAXBif .Bif-homR _ _ = _ ℓ-MAXBif .Bif-×-id = refl ℓ-MAXBif .Bif-×-seq = refl ℓ-MAXBif .Bif-L×-agree _ _ = refl ℓ-MAXBif .Bif-R×-agree _ _ = refl ℓ-MAX : Functor (LEVEL ×C LEVEL) LEVEL ℓ-MAX = BifunctorToParFunctor ℓ-MAXBif