module Cubical.Categories.LocallySmall.Instances.Unit where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Sigma.More
open import Cubical.Data.Unit
open import Cubical.Categories.LocallySmall.Category.Base
open import Cubical.Categories.LocallySmall.Category.Small
open import Cubical.Categories.LocallySmall.Functor.Base
open import Cubical.Categories.LocallySmall.Variables
open import Cubical.Categories.LocallySmall.Instances.Indiscrete
open Category
open Σω
UNIT : GloballySmallCategory (Liftω Unit) ℓ-zero
UNIT = Indiscrete (Liftω Unit)
SmallUNIT : SmallCategory ℓ-zero ℓ-zero
SmallUNIT = smallcat _ UNIT
module _ {C : Category Cob CHom-ℓ} (c : Cob) where
elimUNIT : Functor UNIT C
elimUNIT .Functor.F-ob = λ z → c
elimUNIT .Functor.F-hom = λ z → id C
elimUNIT .Functor.F-id = refl
elimUNIT .Functor.F-seq = λ _ _ → sym (⋆IdR C _)
module _ {C : Category Cob CHom-ℓ} where
introUNIT : Functor C UNIT
introUNIT .Functor.F-ob = λ _ → liftω tt
introUNIT .Functor.F-hom = λ _ → tt
introUNIT .Functor.F-id = refl
introUNIT .Functor.F-seq = λ _ _ → refl