module Cubical.Categories.LocallySmall.NaturalTransformation.Large where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.HLevels.More
open import Cubical.Foundations.Isomorphism hiding (isIso)
open import Cubical.Data.Sigma
open import Cubical.Data.Sigma.More
open import Cubical.Reflection.RecordEquiv.More
import Cubical.Categories.Category as Small
open import Cubical.Categories.LocallySmall.Category.Base
open import Cubical.Categories.LocallySmall.Category.Small
open import Cubical.Categories.LocallySmall.Functor.Base
open import Cubical.Categories.LocallySmall.Variables
open import Cubical.Categories.LocallySmall.Displayed.Category.Base
open import Cubical.Categories.LocallySmall.Displayed.Category.Small
open import Cubical.Categories.LocallySmall.Displayed.Category.Properties
open Category
open Categoryᴰ
record NatTrans {C : Category Cob CHom-ℓ}{D : Category Dob DHom-ℓ}
(F G : Functor C D) : Typeω
where
no-eta-equality
constructor natTrans
private
module F = FunctorNotation F
module G = FunctorNotation G
module C = CategoryNotation C
module D = CategoryNotation D
field
N-ob : ∀ x → D.Hom[ F.F-ob x , G.F-ob x ]
N-hom : ∀ {x y}(f : C.Hom[ x , y ])
→ (F.F-hom f D.⋆ N-ob y) ≡ (N-ob x D.⋆ G.F-hom f)