module Cubical.Categories.LocallySmall.Presheaf.GloballySmall.IntoFiberCategory.Constructions.Unit.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Unit
open import Cubical.Data.Sigma.More
open import Cubical.Categories.LocallySmall.Category.Base
open import Cubical.Categories.LocallySmall.Category.Small
open import Cubical.Categories.LocallySmall.Variables
open import Cubical.Categories.LocallySmall.Functor
open import Cubical.Categories.LocallySmall.Functor.Constant
open import Cubical.Categories.LocallySmall.NaturalTransformation.IntoFiberCategory
open import Cubical.Categories.LocallySmall.Presheaf.GloballySmall.IntoFiberCategory.Base
open import Cubical.Categories.LocallySmall.Displayed.Instances.Sets.Base
open Functor
module _ {C : SmallCategory ℓC ℓC'} where
open NatTransDefs (C ^opsmall) SET
open NatTrans
UnitPsh : Presheaf C ℓ-zero
UnitPsh = Constant (liftω (Unit , isSetUnit))
UnitPsh-intro : ∀ {ℓP} → {P : Presheaf C ℓP} →
PshHom {C = C} P UnitPsh
UnitPsh-intro .N-ob = λ x _ → tt
UnitPsh-intro .N-hom = λ _ → refl