module Cubical.Categories.More where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Data.Sigma
open import Cubical.Categories.Category.Base
private
variable
ℓ ℓ' : Level
module Reasoning (C : Category ℓ ℓ') where
open Category C
⟨⟩⋆⟨_⟩ : ∀ {x y z} {f : C [ x , y ]} {g g' : C [ y , z ]}
→ g ≡ g' → f ⋆ g ≡ f ⋆ g'
⟨⟩⋆⟨ ≡g ⟩ = cong (_ ⋆_) ≡g
⟨_⟩⋆⟨⟩ : ∀ {x y z} {f f' : C [ x , y ]} {g : C [ y , z ]}
→ f ≡ f' → f ⋆ g ≡ f' ⋆ g
⟨ ≡f ⟩⋆⟨⟩ = cong (_⋆ _) ≡f