module Cubical.Categories.NaturalTransformation.Reind where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism renaming (iso to iIso)
open import Cubical.Data.Sigma
import Cubical.Data.Equality as Eq
open import Cubical.Categories.Category renaming (isIso to isIsoC)
open import Cubical.Categories.Functor.Base
open import Cubical.Categories.Functor.Equality
open import Cubical.Categories.Functor.Properties
open import Cubical.Categories.Constructions.BinProduct
open import Cubical.Categories.Morphism
open import Cubical.Categories.Isomorphism
open import Cubical.Categories.NaturalTransformation.Base
open import Cubical.Categories.NaturalTransformation.Properties
open import Cubical.Categories.Instances.Functors
open import Cubical.Categories.Displayed.Section.Base
open import Cubical.Categories.Displayed.Instances.Arrow
private
variable
ℓA ℓA' ℓB ℓB' ℓC ℓC' ℓD ℓD' ℓE ℓE' : Level
ℓ ℓ' ℓ'' : Level
B C D E : Category ℓ ℓ'
open Category
open NatTrans
open NatIso
open isIsoC
module _ {C : Category ℓC ℓC'} {D : Category ℓD ℓD'} where
open Functor
reindNatTrans : (Fl Fr Gl Gr : Functor C D)
→ FunctorEq (Fl ,F Gl) (Fr ,F Gr)
→ Fl ⇒ Gl
→ Fr ⇒ Gr
reindNatTrans Fl Fr Gl Gr F≡G α = ArrowReflection
(reindS' F≡G (arrIntroS α))
reindNatIso : (Fl Fr Gl Gr : Functor C D)
→ FunctorEq (Fl ,F Gl) (Fr ,F Gr)
→ Fl ≅ᶜ Gl
→ Fr ≅ᶜ Gr
reindNatIso Fl Fr Gl Gr F≡G α = IsoReflection
(reindS' F≡G (isoIntroS α))
eqToNatTrans : {F G : Functor C D}
→ FunctorEq (F ,F F) (F ,F G) → F ⇒ G
eqToNatTrans {F = F}{G = G} F≡G =
reindNatTrans F F F G F≡G
(idTrans F)
eqToNatIso : {F G : Functor C D}
→ FunctorEq (F ,F F) (F ,F G) → F ≅ᶜ G
eqToNatIso {F = F}{G = G} F≡G =
reindNatIso F F F G F≡G
(idNatIso F)