{-# OPTIONS --lossy-unification #-}
module Cubical.Categories.Presheaf.Constructions where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Structure
open import Cubical.Data.Sigma
open import Cubical.Data.Unit
open import Cubical.Categories.Category
open import Cubical.Categories.Functor
open import Cubical.Categories.Functors.Constant
open import Cubical.Categories.NaturalTransformation
open import Cubical.Categories.Instances.Functors
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Constructions.BinProduct
open import Cubical.Categories.Constructions.BinProduct.More
open import Cubical.Categories.Instances.Sets.More
open import Cubical.Categories.Presheaf.Base
open import Cubical.Categories.Presheaf.More
open import Cubical.Categories.Presheaf.Representable
open import Cubical.Categories.Yoneda
open import Cubical.Categories.Bifunctor
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Functor
open import Cubical.Categories.Displayed.Instances.Sets.Base
open import Cubical.Categories.Displayed.Instances.Terminal.Base
open import Cubical.Categories.Displayed.Presheaf.Base
private
variable
ℓ ℓ' ℓA ℓB ℓP ℓQ ℓS : Level
open Functor
UnitPsh : ∀ {C : Category ℓ ℓ'} → Presheaf C ℓ-zero
UnitPsh = Constant _ _ (Unit , isSetUnit)
UnitPsh-intro : ∀ {C : Category ℓ ℓ'}{P : Presheaf C ℓA}
→ PshHom P UnitPsh
UnitPsh-intro .fst = λ x _ → tt
UnitPsh-intro .snd x y f p = refl
LiftPsh : ∀ {C : Category ℓ ℓ'} (P : Presheaf C ℓA) (ℓ'' : Level) → Presheaf C (ℓ-max ℓA ℓ'')
LiftPsh P ℓ'' = LiftF {ℓ' = ℓ''} ∘F P
module _ {C : Category ℓ ℓ'} where
PshProd' : Functor
(PresheafCategory C ℓA ×C PresheafCategory C ℓB)
(PresheafCategory C (ℓ-max ℓA ℓB))
PshProd' = (postcomposeF _ ×Sets ∘F ,F-functor)
PshProd : Bifunctor (PresheafCategory C ℓA) (PresheafCategory C ℓB)
(PresheafCategory C (ℓ-max ℓA ℓB))
PshProd = ParFunctorToBifunctor PshProd'
_×Psh_ : Presheaf C ℓA → Presheaf C ℓB → Presheaf C _
P ×Psh Q = PshProd ⟅ P , Q ⟆b
module _ (P : Presheaf C ℓA)(Q : Presheaf C ℓB)where
π₁ : PshHom (P ×Psh Q) P
π₁ .fst _ = fst
π₁ .snd _ _ _ _ = refl
π₂ : PshHom (P ×Psh Q) Q
π₂ .fst _ = snd
π₂ .snd _ _ _ _ = refl
LocallyRepresentable : Presheaf C ℓP → Type _
LocallyRepresentable P = ∀ c → UniversalElement C ((C [-, c ]) ×Psh P)
module _ ((P , _×P) : Σ[ P ∈ Presheaf C ℓA ] LocallyRepresentable P) (Q : Presheaf C ℓB) where
private
module C = Category C
module P = PresheafNotation P
module Q = PresheafNotation Q
open UniversalElementNotation
_⇒PshSmall_ : Presheaf C ℓB
_⇒PshSmall_ .F-ob Γ = Q .F-ob ((Γ ×P) .vertex)
_⇒PshSmall_ .F-hom {Γ}{Δ} γ q =
intro (Γ ×P) (((Δ ×P) .element .fst C.⋆ γ) , (Δ ×P) .element .snd) Q.⋆ q
_⇒PshSmall_ .F-id {Γ} = funExt λ q →
Q.⟨ intro⟨_⟩ (Γ ×P) (ΣPathP (C.⋆IdR _ , refl)) ∙ (sym $ weak-η $ Γ ×P) ⟩⋆⟨⟩
∙ Q.⋆IdL _
_⇒PshSmall_ .F-seq {Γ}{Δ}{Θ} γ δ = funExt λ q →
Q.⟨
intro≡ (Γ ×P) (ΣPathP
( (sym (C.⋆Assoc _ _ _) ∙ C.⟨ sym $ cong fst $ β $ Δ ×P ⟩⋆⟨ refl ⟩ ∙ C.⋆Assoc _ _ _
∙ C.⟨ refl ⟩⋆⟨ sym $ cong fst $ β $ Γ ×P ⟩
∙ sym (C.⋆Assoc _ _ _))
, (sym $ P.⋆Assoc _ _ _ ∙ P.⟨⟩⋆⟨ cong snd $ β $ Γ ×P ⟩ ∙ (cong snd $ β $ Δ ×P))
))
⟩⋆⟨⟩
∙ Q.⋆Assoc _ _ _
module _ (P : Presheaf C ℓA) (Q : Presheaf C ℓB) where
private
module C = Category C
module P = PresheafNotation P
module Q = PresheafNotation Q
open UniversalElementNotation
_⇒PshLarge_ : Presheaf C (ℓ-max (ℓ-max (ℓ-max ℓ ℓ') (ℓ-max ℓ' ℓA)) ℓB)
_⇒PshLarge_ = (PshHomProf ⟅ Q ⟆) ∘F ((appR PshProd P ∘F YO) ^opF)
module _ {S : Presheaf C ℓS} where
private
module S = PresheafNotation S
module S×P = PresheafNotation (S ×Psh P)
λPshHom : PshHom (S ×Psh P) Q → PshHom S (_⇒PshLarge_)
λPshHom f⟨p⟩ .fst Γ s .fst Δ (γ , p) = f⟨p⟩ .fst Δ ((γ S.⋆ s) , p)
λPshHom f⟨p⟩ .fst Γ s .snd Θ Δ δ (γ , p) =
cong (f⟨p⟩ .fst Θ) (ΣPathP (S.⋆Assoc _ _ _ , refl))
∙ f⟨p⟩ .snd _ _ _ _
λPshHom f⟨p⟩ .snd Θ Δ δ s = makePshHomPath (funExt (λ Ξ → funExt (λ (θ , p) →
cong (f⟨p⟩ .fst Ξ) (ΣPathP ((sym $ S.⋆Assoc _ _ _) , refl)))))
appPshHom : PshHom (_⇒PshLarge_ ×Psh P) Q
appPshHom .fst Γ (f , p) = f .fst Γ (C.id , p)
appPshHom .snd Δ Γ γ (f , p) =
cong (f .fst Δ) (ΣPathP (C.⋆IdL _ ∙ sym (C.⋆IdR _) , refl))
∙ f .snd _ _ _ _
module _ (P : Presheaf C ℓA)(_×P : ∀ c → UniversalElement C ((C [-, c ]) ×Psh P))(Q : Presheaf C ℓB) where
private
module C = Category C
module P = PresheafNotation P
module _×P c = PresheafNotation ((C [-, c ]) ×Psh P)
module Q = PresheafNotation Q
open UniversalElementNotation
⇒PshSmallIso⇒PshLarge : ∀ Γ
→ Iso Q.p[ (Γ ×P) .vertex ]
(PshHom ((C [-, Γ ]) ×Psh P) Q)
⇒PshSmallIso⇒PshLarge Γ =
compIso
(IsoYoRec Q ((Γ ×P) .vertex))
(PshIso→⋆PshHomIso (invPshIso (yoRecIso (Γ ×P))))
private
module ⇒PshSmallIso⇒PshLarge Γ = Iso (⇒PshSmallIso⇒PshLarge Γ)
⇒PshSmall≅⇒PshLarge : PshIso ((P , _×P) ⇒PshSmall Q) (P ⇒PshLarge Q)
⇒PshSmall≅⇒PshLarge .fst .fst = ⇒PshSmallIso⇒PshLarge.fun
⇒PshSmall≅⇒PshLarge .fst .snd Δ Γ γ q = makePshHomPath (funExt λ x → funExt λ p →
(sym $ Q.⋆Assoc _ _ _)
∙ Q.⟨ sym $ intro≡ (Γ ×P) $ ΣPathP
( (C.⟨ cong fst $ sym $ β $ Δ ×P ⟩⋆⟨ refl ⟩ ∙ C.⋆Assoc _ _ _) ∙ C.⟨ refl ⟩⋆⟨ cong fst $ sym $ β $ Γ ×P ⟩ ∙ sym (C.⋆Assoc _ _ _)
, (cong snd $ sym $ β $ Δ ×P) ∙ P.⟨⟩⋆⟨ cong snd $ sym $ β $ Γ ×P ⟩ ∙ sym (P.⋆Assoc _ _ _)
)
⟩⋆⟨⟩)
⇒PshSmall≅⇒PshLarge .snd Γ = IsoToIsIso (⇒PshSmallIso⇒PshLarge Γ)
open Functor
open Functorᴰ
module _ (P : Presheaf C ℓA) (Pᴰ : Presheafᴰ P (Unitᴰ _) ℓB) where
private
module C = Category C
module P = PresheafNotation P
module Pᴰ = PresheafᴰNotation Pᴰ
ΣPsh : Presheaf C (ℓ-max ℓA ℓB)
ΣPsh .F-ob x .fst = Σ[ p ∈ P.p[ x ] ] ⟨ Pᴰ .F-obᴰ _ p ⟩
ΣPsh .F-ob x .snd = isSetΣ P.isSetPsh (λ p → Pᴰ .F-obᴰ _ _ .snd)
ΣPsh .F-hom f (p , pᴰ) = _ , Pᴰ .F-homᴰ {f = f} _ p pᴰ
ΣPsh .F-id = funExt λ (p , pᴰ) →
ΣPathP (_ , λ i → Pᴰ .F-idᴰ i p pᴰ )
ΣPsh .F-seq f g = funExt λ (p , pᴰ) →
ΣPathP (_ , λ i → Pᴰ .F-seqᴰ {f = f}{g = g} _ _ i p pᴰ)
Comprehension : (Γ : C.ob) → P.p[ Γ ] → Presheaf C (ℓ-max ℓ' ℓB)
Comprehension Γ p .F-ob Δ .fst =
Σ[ γ ∈ C [ Δ , Γ ] ] Pᴰ.p[ γ P.⋆ p ][ _ ]
Comprehension Γ p .F-ob Δ .snd = isSetΣ C.isSetHom (λ _ → Pᴰ.isSetPshᴰ)
Comprehension Γ p .F-hom δ (γ , pᴰ) =
(δ C.⋆ γ) , Pᴰ.reind (sym $ P.⋆Assoc _ _ _)
(_ Pᴰ.⋆ᴰ pᴰ)
Comprehension Γ p .F-id = funExt (λ (γ , q) → ΣPathP ((C.⋆IdL _) ,
(Pᴰ.rectify $ Pᴰ.≡out $
sym (Pᴰ.reind-filler _ _)
∙ Pᴰ.⋆IdL _)))
Comprehension Γ p .F-seq f g = funExt λ (γ , q) → ΣPathP (C.⋆Assoc _ _ _
, (Pᴰ.rectify $ Pᴰ.≡out $
sym (Pᴰ.reind-filler _ _)
∙ Pᴰ.⋆Assoc _ _ _
∙ Pᴰ.⟨ refl ⟩⋆⟨ Pᴰ.reind-filler _ _ ⟩
∙ Pᴰ.reind-filler _ _))
private
open Category
open Bifunctor
open NatTrans
module _ (P P' : Presheaf C ℓA)(Q Q' : Presheaf C ℓB)
(α : PresheafCategory C ℓA [ P , P' ])
(β : PresheafCategory C ℓB [ Q , Q' ])
c where
_ : PshProd .Bif-homL α Q .N-ob c ≡ λ (p , q) → α .N-ob c p , q
_ = refl
_ : PshProd .Bif-homR P β .N-ob c ≡ λ (p , q) → p , β .N-ob c q
_ = refl