{-# OPTIONS --lossy-unification #-}
module Cubical.Categories.Presheaf.More where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Isomorphism.More
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Transport hiding (pathToIso)
open import Cubical.Data.Sigma
open import Cubical.Categories.Category renaming (isIso to isIsoC)
open import Cubical.Categories.Limits.Terminal
open import Cubical.Categories.Constructions.Lift
open import Cubical.Categories.Constructions.Elements
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Instances.Functors
open import Cubical.Categories.Functor.Base
open import Cubical.Categories.NaturalTransformation hiding (_∘ˡ_; _∘ˡⁱ_)
open import Cubical.Categories.Presheaf.Base
open import Cubical.Categories.Presheaf.Representable
open import Cubical.Categories.Presheaf.Properties renaming (PshIso to PshIsoLift)
open import Cubical.Categories.Profunctor.General
open import Cubical.Categories.Yoneda
open import Cubical.Categories.Instances.Sets.More
open import Cubical.Categories.Isomorphism.More
open Functor
open Iso
open NatIso
open NatTrans
private
variable
ℓ ℓ' ℓP ℓQ ℓS ℓS' ℓS'' : Level
ℓC ℓC' ℓD ℓD' : Level
𝓟o = Presheaf
𝓟* : Category ℓ ℓ' → (ℓS : Level) → Type (ℓ-max (ℓ-max ℓ ℓ') (ℓ-suc ℓS))
𝓟* C ℓS = Functor C (SET ℓS)
module _ (C : Category ℓ ℓ') (c : C .Category.ob) where
open Category
open UniversalElement
selfUnivElt : UniversalElement C (C [-, c ])
selfUnivElt .vertex = c
selfUnivElt .element = C .id
selfUnivElt .universal A = isoToIsEquiv (iso _ (λ z → z)
(C .⋆IdR)
(C .⋆IdR))
selfUnivEltᵒᵖ : UniversalElement (C ^op) (C [ c ,-])
selfUnivEltᵒᵖ .vertex = c
selfUnivEltᵒᵖ .element = C .id
selfUnivEltᵒᵖ .universal _ = isoToIsEquiv (iso _ (λ z → z)
(C .⋆IdL)
(C .⋆IdL))
module _ {ℓo}{ℓh}{ℓp} (C : Category ℓo ℓh) (P : Presheaf C ℓp) where
open Category
open UniversalElement
UniversalElementOn : C .ob → Type (ℓ-max (ℓ-max ℓo ℓh) ℓp)
UniversalElementOn vertex =
Σ[ element ∈ (P ⟅ vertex ⟆) .fst ] isUniversal C P vertex element
UniversalElementToUniversalElementOn :
(ue : UniversalElement C P) → UniversalElementOn (ue .vertex)
UniversalElementToUniversalElementOn ue .fst = ue .element
UniversalElementToUniversalElementOn ue .snd = ue .universal
module PresheafNotation {ℓo}{ℓh}
{C : Category ℓo ℓh} {ℓp} (P : Presheaf C ℓp)
where
private
module C = Category C
p[_] : C.ob → Type ℓp
p[ x ] = ⟨ P ⟅ x ⟆ ⟩
infixr 9 _⋆_
_⋆_ : ∀ {x y} (f : C [ x , y ]) (g : p[ y ]) → p[ x ]
f ⋆ g = P .F-hom f g
⋆IdL : ∀ {x} (g : p[ x ]) → C.id ⋆ g ≡ g
⋆IdL = funExt⁻ (P .F-id)
⋆Assoc : ∀ {x y z} (f : C [ x , y ])(g : C [ y , z ])(h : p[ z ]) →
(f C.⋆ g) ⋆ h ≡ f ⋆ (g ⋆ h)
⋆Assoc f g = funExt⁻ (P .F-seq g f)
⟨_⟩⋆⟨_⟩ : ∀ {x y} {f f' : C [ x , y ]} {g g' : p[ y ]}
→ f ≡ f' → g ≡ g' → f ⋆ g ≡ f' ⋆ g'
⟨ f≡f' ⟩⋆⟨ g≡g' ⟩ = cong₂ _⋆_ f≡f' g≡g'
⟨⟩⋆⟨_⟩ : ∀ {x y} {f : C [ x , y ]} {g g' : p[ y ]}
→ g ≡ g' → f ⋆ g ≡ f ⋆ g'
⟨⟩⋆⟨_⟩ = ⟨ refl ⟩⋆⟨_⟩
⟨_⟩⋆⟨⟩ : ∀ {x y} {f f' : C [ x , y ]} {g : p[ y ]}
→ f ≡ f' → f ⋆ g ≡ f' ⋆ g
⟨_⟩⋆⟨⟩ = ⟨_⟩⋆⟨ refl ⟩
isSetPsh : ∀ {x} → isSet (p[ x ])
isSetPsh {x} = (P ⟅ x ⟆) .snd