module Cubical.Categories.Displayed.Instances.Presheaf.Properties where

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Data.Sigma
open import Cubical.Data.Unit

open import Cubical.Categories.Category
open import Cubical.Categories.Presheaf
open import Cubical.Categories.Functor
open import Cubical.Categories.NaturalTransformation
open import Cubical.Categories.Constructions.Elements
open import Cubical.Categories.Constructions.Fiber
open import Cubical.Categories.Limits.Terminal
open import Cubical.Categories.Limits.BinProduct
open import Cubical.Categories.Presheaf.CCC
open import Cubical.Categories.Presheaf.Morphism.Alt

open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Reasoning
open import Cubical.Categories.Displayed.Instances.Sets
open import Cubical.Categories.Displayed.Limits.Terminal
open import Cubical.Categories.Displayed.Limits.BinProduct
open import Cubical.Categories.Displayed.Presheaf using (UniversalElementᴰ; UniversalElementⱽ)
open import Cubical.Categories.Displayed.Fibration.Base
import Cubical.Categories.Displayed.Fibration.Manual as ManualFib
import Cubical.Categories.Displayed.Presheaf.CartesianLift.Manual as ManualCL
open import Cubical.Categories.Displayed.Presheaf.CartesianLift.Properties
open import Cubical.Categories.Displayed.Instances.Presheaf.Base

open Category
open Functor
open NatTrans
open Contravariant
open Categoryᴰ
open UniversalElementᴰ

private
  variable ℓC ℓC' ℓD ℓD' ℓE ℓE' ℓS ℓSᴰ : Level

module _ (C : Category ℓC ℓC') where
  reindPresheafᴰ :  {P : Presheaf C ℓS}{Q : Presheaf C ℓS}
    (α : PresheafCategory C ℓS [ P , Q ])
    (Pᴰ : Presheafᴰ C ℓS ℓSᴰ Q)
     Presheafᴰ C ℓS ℓSᴰ P
  reindPresheafᴰ α Pᴰ .F-ob (Γ , ϕ) = Pᴰ  Γ , (α  Γ ) ϕ 
  reindPresheafᴰ α Pᴰ .F-hom {x = Γ,ϕ} {y = Δ,ψ} (f , p) =
    Pᴰ  f , sym (funExt⁻ (α .N-hom f) (Γ,ϕ .snd))  congS (α  Δ,ψ .fst ) p 
  reindPresheafᴰ {Q = Q} α Pᴰ .F-id {x = Γ , ϕ} =
    funExt  α⟦Γ⟧ϕᴰ 
      congS  x  (Pᴰ  C .id , x ) α⟦Γ⟧ϕᴰ) ((Q  _ ) .snd _ _ _ _) 
      funExt⁻ (Pᴰ .F-id) α⟦Γ⟧ϕᴰ)
  reindPresheafᴰ {Q = Q} α Pᴰ .F-seq _ _ =
    congS  x  Pᴰ  _ , x ) ((Q  _ ) .snd _ _ _ _) 
    Pᴰ .F-seq _ _

module _ (C : Category ℓC ℓC') (ℓS ℓSᴰ : Level) where
  open UniversalElementⱽ
  private
    module PRESHEAFᴰ = Fibers (PRESHEAFᴰ C ℓS ℓSᴰ)
  open ManualCL.CartesianLift
  opaque
    private
      -- TODO This can likely be refactored to natively use
      -- the version of CartesianLift in Displayed.Fibration.Base
      isFibrationPRESHEAFᴰ' : ManualFib.isFibration (PRESHEAFᴰ C ℓS ℓSᴰ)
      isFibrationPRESHEAFᴰ' Pᴰ α .p*Pᴰ = reindPresheafᴰ C α Pᴰ
      isFibrationPRESHEAFᴰ' Pᴰ α .π = natTrans  x z  z)  _  refl)
      isFibrationPRESHEAFᴰ' {c = Q} Pᴰ α .isCartesian {g = β} .fst  βαᴰ =
        natTrans (βαᴰ ⟦_⟧)  _  funExt  ϕᴰ 
        funExt⁻ (βαᴰ .N-hom _) ϕᴰ 
        congS  x  (Pᴰ  _ , x ) ((βαᴰ  _ ) ϕᴰ))
          ((Q  _ ) .snd _ _ _ _)))
      isFibrationPRESHEAFᴰ' Pᴰ α .isCartesian {g = β} .snd .fst βαᴰ =
        makeNatTransPath refl
      isFibrationPRESHEAFᴰ' Pᴰ α .isCartesian {g = β} .snd .snd αᴰ =
        makeNatTransPath refl

    isFibrationPRESHEAFᴰ : isFibration (PRESHEAFᴰ C ℓS ℓSᴰ)
    isFibrationPRESHEAFᴰ Pᴰ =
      isFibrationManual→isFibration
        (PRESHEAFᴰ C ℓS ℓSᴰ [-][-, Pᴰ ])
        (isFibrationPRESHEAFᴰ' Pᴰ)