module Cubical.Categories.Displayed.Instances.Presheaf.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Data.Sigma
open import Cubical.Data.Unit
open import Cubical.Categories.Category
open import Cubical.Categories.Presheaf
open import Cubical.Categories.Functor
open import Cubical.Categories.NaturalTransformation
open import Cubical.Categories.Constructions.Elements
open import Cubical.Categories.Constructions.Fiber
open import Cubical.Categories.Limits.Terminal
open import Cubical.Categories.Limits.BinProduct
open import Cubical.Categories.Presheaf.CCC
open import Cubical.Categories.Presheaf.Morphism.Alt
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Reasoning
open import Cubical.Categories.Displayed.Instances.Sets
open import Cubical.Categories.Displayed.Limits.Terminal
open import Cubical.Categories.Displayed.Limits.BinProduct
open import Cubical.Categories.Displayed.Presheaf using (UniversalElementᴰ; UniversalElementⱽ)
open import Cubical.Categories.Displayed.Fibration.Base
import Cubical.Categories.Displayed.Fibration.Manual as ManualFib
import Cubical.Categories.Displayed.Presheaf.CartesianLift.Manual as ManualCL
open import Cubical.Categories.Displayed.Presheaf.CartesianLift.Properties
open import Cubical.Categories.Displayed.Instances.Presheaf.Base
open Category
open Functor
open NatTrans
open Contravariant
open Categoryᴰ
open UniversalElementᴰ
private
variable ℓC ℓC' ℓD ℓD' ℓE ℓE' ℓS ℓSᴰ : Level
module _ (C : Category ℓC ℓC') where
reindPresheafᴰ : ∀ {P : Presheaf C ℓS}{Q : Presheaf C ℓS}
(α : PresheafCategory C ℓS [ P , Q ])
(Pᴰ : Presheafᴰ C ℓS ℓSᴰ Q)
→ Presheafᴰ C ℓS ℓSᴰ P
reindPresheafᴰ α Pᴰ .F-ob (Γ , ϕ) = Pᴰ ⟅ Γ , (α ⟦ Γ ⟧) ϕ ⟆
reindPresheafᴰ α Pᴰ .F-hom {x = Γ,ϕ} {y = Δ,ψ} (f , p) =
Pᴰ ⟪ f , sym (funExt⁻ (α .N-hom f) (Γ,ϕ .snd)) ∙ congS (α ⟦ Δ,ψ .fst ⟧) p ⟫
reindPresheafᴰ {Q = Q} α Pᴰ .F-id {x = Γ , ϕ} =
funExt (λ α⟦Γ⟧ϕᴰ →
congS (λ x → (Pᴰ ⟪ C .id , x ⟫) α⟦Γ⟧ϕᴰ) ((Q ⟅ _ ⟆) .snd _ _ _ _) ∙
funExt⁻ (Pᴰ .F-id) α⟦Γ⟧ϕᴰ)
reindPresheafᴰ {Q = Q} α Pᴰ .F-seq _ _ =
congS (λ x → Pᴰ ⟪ _ , x ⟫) ((Q ⟅ _ ⟆) .snd _ _ _ _) ∙
Pᴰ .F-seq _ _
module _ (C : Category ℓC ℓC') (ℓS ℓSᴰ : Level) where
open UniversalElementⱽ
private
module PRESHEAFᴰ = Fibers (PRESHEAFᴰ C ℓS ℓSᴰ)
open ManualCL.CartesianLift
opaque
private
isFibrationPRESHEAFᴰ' : ManualFib.isFibration (PRESHEAFᴰ C ℓS ℓSᴰ)
isFibrationPRESHEAFᴰ' Pᴰ α .p*Pᴰ = reindPresheafᴰ C α Pᴰ
isFibrationPRESHEAFᴰ' Pᴰ α .π = natTrans (λ x z → z) (λ _ → refl)
isFibrationPRESHEAFᴰ' {c = Q} Pᴰ α .isCartesian {g = β} .fst βαᴰ =
natTrans (βαᴰ ⟦_⟧) (λ _ → funExt (λ ϕᴰ →
funExt⁻ (βαᴰ .N-hom _) ϕᴰ ∙
congS (λ x → (Pᴰ ⟪ _ , x ⟫) ((βαᴰ ⟦ _ ⟧) ϕᴰ))
((Q ⟅ _ ⟆) .snd _ _ _ _)))
isFibrationPRESHEAFᴰ' Pᴰ α .isCartesian {g = β} .snd .fst βαᴰ =
makeNatTransPath refl
isFibrationPRESHEAFᴰ' Pᴰ α .isCartesian {g = β} .snd .snd αᴰ =
makeNatTransPath refl
isFibrationPRESHEAFᴰ : isFibration (PRESHEAFᴰ C ℓS ℓSᴰ)
isFibrationPRESHEAFᴰ Pᴰ =
isFibrationManual→isFibration
(PRESHEAFᴰ C ℓS ℓSᴰ [-][-, Pᴰ ])
(isFibrationPRESHEAFᴰ' Pᴰ)