{-# OPTIONS --lossy-unification #-}
module Cubical.Categories.Displayed.Presheaf.CartesianLift.Manual where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.More
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
import Cubical.Data.Equality as Eq
open import Cubical.Data.Sigma
open import Cubical.Categories.Category hiding (isIso)
open import Cubical.Categories.Constructions.Fiber
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Presheaf.Base
open import Cubical.Categories.Presheaf.Constructions
open import Cubical.Categories.Presheaf.More
open import Cubical.Categories.Presheaf.Morphism.Alt
open import Cubical.Categories.Functor
open import Cubical.Categories.NaturalTransformation
open import Cubical.Categories.Bifunctor
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Instances.Sets.Base
open import Cubical.Categories.Displayed.Functor
open import Cubical.Categories.Displayed.Presheaf
open import Cubical.Categories.Displayed.Presheaf.Constructions
import Cubical.Categories.Displayed.Constructions.Reindex.Base as Reindex
private
variable
ℓB ℓB' ℓC ℓC' ℓCᴰ ℓCᴰ' ℓD ℓD' ℓDᴰ ℓDᴰ' ℓP ℓQ ℓPᴰ ℓQᴰ : Level
open Category
open Functor
open Functorᴰ
open PshHom
module _ {C : Category ℓC ℓC'} {Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ'}
{P : Presheaf C ℓP}
where
private
module Cᴰ = Fibers Cᴰ
module P = PresheafNotation P
record CartesianLift {x : C .ob} (p : P.p[ x ]) (Pᴰ : Presheafᴰ P Cᴰ ℓPᴰ) : Type
(ℓ-max (ℓ-max ℓC ℓC') (ℓ-max (ℓ-max ℓCᴰ ℓCᴰ') ℓPᴰ)) where
private
module Pᴰ = PresheafᴰNotation Pᴰ
field
p*Pᴰ : Cᴰ.ob[ x ]
π : Pᴰ.p[ p ][ p*Pᴰ ]
isCartesian : ∀ {z zᴰ}{g : C [ z , x ]} →
isIso (λ (gᴰ : Cᴰ [ g ][ zᴰ , p*Pᴰ ]) → gᴰ Pᴰ.⋆ᴰ π)
opaque
intro :
∀ {z zᴰ}{g : C [ z , x ]}
→ Pᴰ.p[ g P.⋆ p ][ zᴰ ]
→ Cᴰ [ g ][ zᴰ , p*Pᴰ ]
intro = isCartesian .fst
opaque
unfolding intro
private
intro⟨_⟩ :
∀ {z zᴰ}{g g' : C [ z , x ]}
→ {gpᴰ : Pᴰ.p[ g P.⋆ p ][ zᴰ ]}
→ {gpᴰ' : Pᴰ.p[ g' P.⋆ p ][ zᴰ ]}
→ (g , gpᴰ) ≡ (g' , gpᴰ')
→ (g , intro gpᴰ) ≡ (g' , intro gpᴰ')
intro⟨ gp≡gp' ⟩ i .fst = gp≡gp' i .fst
intro⟨ gp≡gp' ⟩ i .snd = intro $ gp≡gp' i .snd
intro⟨_⟩⟨_⟩ :
∀ {z zᴰ}{g g' : C [ z , x ]}
→ {gpᴰ : Pᴰ.p[ g P.⋆ p ][ zᴰ ]}
→ {gpᴰ' : Pᴰ.p[ g' P.⋆ p ][ zᴰ ]}
→ g ≡ g'
→ Path Pᴰ.p[ _ ] (_ , gpᴰ) (_ , gpᴰ')
→ Path Cᴰ.Hom[ _ , _ ] (_ , intro gpᴰ) (_ , intro gpᴰ')
intro⟨ g≡g' ⟩⟨ gpᴰ≡gpᴰ' ⟩ =
intro⟨ ΣPathP (g≡g' , (Pᴰ.rectify $ Pᴰ.≡out $ gpᴰ≡gpᴰ')) ⟩
β :
∀ {z zᴰ}{g : C [ z , x ]}
→ {gpᴰ : Pᴰ.p[ g P.⋆ p ][ zᴰ ]}
→ Path Pᴰ.p[ _ ]
(_ , (intro gpᴰ Pᴰ.⋆ᴰ π))
(_ , gpᴰ)
β = Pᴰ.≡in $ isCartesian .snd .fst _
intro≡ :
∀ {z zᴰ}{g : C [ z , x ]}
→ {gpᴰ : Pᴰ.p[ g P.⋆ p ][ zᴰ ]}
→ {gᴰ : Cᴰ [ g ][ zᴰ , p*Pᴰ ]}
→ Path Pᴰ.p[ _ ]
(_ , gpᴰ)
(_ , (gᴰ Pᴰ.⋆ᴰ π))
→ Path Cᴰ.Hom[ _ , _ ]
(_ , intro gpᴰ)
(_ , gᴰ)
intro≡ gp≡gπ =
intro⟨ refl ⟩⟨ gp≡gπ ⟩
∙ (Cᴰ.≡in (isCartesian .snd .snd _))
open CartesianLift
module _ {C : Category ℓC ℓC'} {Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ'}
{P : Presheaf C ℓP} (Pᴰ : Presheafᴰ P Cᴰ ℓPᴰ)
where
private
module P = PresheafNotation P
isFibration = ∀ {x} (p : P.p[ x ]) → CartesianLift p Pᴰ
module isFibrationNotation (isFibPᴰ : isFibration) where
module _ {x} (p : P.p[ x ]) where
open CartesianLift (isFibPᴰ p) using (p*Pᴰ) public
module _ {x} {p : P.p[ x ]} where
open CartesianLift (isFibPᴰ p) hiding (p*Pᴰ) public
module _ {C : Category ℓC ℓC'} {Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ'}
{P : Presheaf C ℓP} {Q : Presheaf C ℓQ}
(Qᴰ : Presheafᴰ Q Cᴰ ℓQᴰ) (α : PshHom P Q)
(isFibQᴰ : isFibration Qᴰ)
where
private
module Cᴰ = Fibers Cᴰ
module Qᴰ = PresheafᴰNotation Qᴰ
module isFibQᴰ = isFibrationNotation Qᴰ isFibQᴰ
isFibrationReind : isFibration (reind {P = P} α Qᴰ)
isFibrationReind p .p*Pᴰ = isFibQᴰ.p*Pᴰ (α .N-ob _ p)
isFibrationReind p .π = isFibQᴰ.π
isFibrationReind p .isCartesian .fst qᴰ =
isFibQᴰ.intro $ Qᴰ.reind (α .N-hom _ _ _ p) qᴰ
isFibrationReind p .isCartesian .snd .fst qᴰ =
Qᴰ.rectify $ Qᴰ.≡out $
sym (Qᴰ.reind-filler _ _)
∙ isFibQᴰ.β
∙ (sym $ Qᴰ.reind-filler _ _)
isFibrationReind p .isCartesian .snd .snd gᴰ =
Cᴰ.rectify $ Cᴰ.≡out $ isFibQᴰ.intro≡ $ sym $
Qᴰ.reind-filler _ _ ∙ Qᴰ.reind-filler _ _
module _ {C : Category ℓC ℓC'} {D : Category ℓD ℓD'} {Dᴰ : Categoryᴰ D ℓDᴰ ℓDᴰ'}
(F : Functor C D)
where
module _ {P : Presheaf D ℓP} (Pᴰ : Presheafᴰ P Dᴰ ℓPᴰ) (isFibPᴰ : isFibration Pᴰ) where
isFibrationReindFunc
: isFibration (reindFunc F Pᴰ)
isFibrationReindFunc p .p*Pᴰ = p*Pᴰ (isFibPᴰ p)
isFibrationReindFunc p .π = π (isFibPᴰ p)
isFibrationReindFunc p .isCartesian = isCartesian (isFibPᴰ p)
module _
{C : Category ℓC ℓC'}
{D : Category ℓD ℓD'}{Dᴰ : Categoryᴰ D ℓDᴰ ℓDᴰ'}
{F : Functor C D}
{P : Presheaf C ℓP}{Q : Presheaf D ℓQ}
(α : PshHet F P Q){Qᴰ : Presheafᴰ Q Dᴰ ℓQᴰ}
(isFibQᴰ : isFibration Qᴰ)
where
isFibrationReindHet : isFibration (reindHet α Qᴰ)
isFibrationReindHet = isFibrationReind _ α (isFibrationReindFunc F Qᴰ isFibQᴰ)