module Cubical.Categories.Instances.Props where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.Properties
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Function
open import Cubical.Foundations.Structure
open import Cubical.Data.Unit
open import Cubical.Data.Sigma
open import Cubical.Categories.Category
open import Cubical.Categories.HLevels
open import Cubical.Categories.Functor
open import Cubical.Categories.NaturalTransformation
open import Cubical.Categories.Instances.Thin
open import Cubical.Categories.Instances.Sets
private
variable ℓ : Level
open Functor
PROP : ∀ ℓ → Category (ℓ-suc ℓ) ℓ
PROP ℓ = ThinCategory (hProp ℓ) (λ P Q → ⟨ P ⟩ → ⟨ Q ⟩)
(λ {a} z → z)
(λ {a} {b} {c} z z₁ z₂ → z₁ (z z₂))
λ {b = Q} → isProp→ (Q .snd)
hasPropHomsPROP : hasPropHoms (PROP ℓ)
hasPropHomsPROP {y = Q} = isProp→ (Q .snd)
PROP→SET : Functor (PROP ℓ) (SET ℓ)
PROP→SET .F-ob P = ⟨ P ⟩ , (isProp→isSet (P .snd))
PROP→SET .F-hom = λ z → z
PROP→SET .F-id = refl
PROP→SET .F-seq = λ _ _ → refl