{-# OPTIONS --lossy-unification #-}
module Cubical.Categories.Limits.Pullback.More where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Structure
open import Cubical.Data.Sigma
open import Cubical.Categories.Category
open import Cubical.Categories.Functor
open import Cubical.Categories.Limits.Pullback
open import Cubical.Categories.Adjoint.UniversalElements
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Instances.Functors
open import Cubical.Categories.Presheaf.Base
open import Cubical.Categories.Presheaf.More
open import Cubical.Categories.Presheaf.Morphism.Alt
open import Cubical.Categories.Presheaf.Representable
open import Cubical.Categories.Presheaf.Representable.More
open import Cubical.Categories.Presheaf.Constructions.Reindex
open import Cubical.Categories.Presheaf.Constructions.Tensor
open import Cubical.Categories.Yoneda.More
open import Cubical.Categories.Bifunctor
open import Cubical.Categories.Profunctor.General
open import Cubical.Categories.Profunctor.Relator
open import Cubical.Categories.Profunctor.Constructions.Extension
open import Cubical.Categories.FunctorComprehension
private
variable
ℓ ℓ' ℓA ℓB ℓA' ℓB' ℓC ℓC' ℓD ℓD' ℓP ℓQ ℓR ℓS : Level
open Functor
open Iso
open PshHom
open PshIso
module _ (C : Category ℓ ℓ') where
private
module C = Category C
module _ {cospan : Cospan C} (pb : Pullback C cospan) where
open Cospan cospan
open Pullback pb
pullbackExtensionality : ∀ {Γ}{f g : C [ Γ , pbOb ]}
→ (f C.⋆ pbPr₁) ≡ (g C.⋆ pbPr₁)
→ (f C.⋆ pbPr₂) ≡ (g C.⋆ pbPr₂)
→ f ≡ g
pullbackExtensionality f1≡g1 f2≡g2 = (sym $ pullbackArrowUnique {H = C.⋆Assoc _ _ _ ∙ C.⟨ refl ⟩⋆⟨ pbCommutes ⟩ ∙ sym (C.⋆Assoc _ _ _)} refl refl)
∙ pullbackArrowUnique f1≡g1 f2≡g2
isPullback→ΣIso : ∀ Γ (f : C [ Γ , l ])
→ Iso (fiber (C._⋆ pbPr₁) f)
(fiber (C._⋆ s₂) (f C.⋆ s₁))
isPullback→ΣIso Γ f .fun (g , gπ₁≡f) = (g C.⋆ pbPr₂) ,
C.⋆Assoc _ _ _
∙ C.⟨ refl ⟩⋆⟨ sym $ pbCommutes ⟩
∙ sym (C.⋆Assoc _ _ _)
∙ C.⟨ gπ₁≡f ⟩⋆⟨ refl ⟩
isPullback→ΣIso Γ f .inv (h , hs₂≡fs₁) = (pullbackArrow f h (sym $ hs₂≡fs₁))
, (sym $ pullbackArrowPr₁ C pb f h (sym $ hs₂≡fs₁))
isPullback→ΣIso Γ f .sec (h , hs₂≡fs₁) = ΣPathPProp (λ _ → C.isSetHom _ _) $
(sym $ pullbackArrowPr₂ C pb f h (sym $ hs₂≡fs₁))
isPullback→ΣIso Γ f .ret (g , gπ₁≡f) = ΣPathPProp (λ _ → C.isSetHom _ _) $
pullbackArrowUnique (sym gπ₁≡f) refl