module Cubical.Categories.LocallySmall.Constructions.DisplayOverTerminal.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
import Cubical.Data.Equality as Eq
open import Cubical.Data.Unit
open import Cubical.Data.Sigma.More
open import Cubical.Categories.LocallySmall.Variables
open import Cubical.Categories.LocallySmall.Category.Base
open import Cubical.Categories.LocallySmall.Category.Small
open import Cubical.Categories.LocallySmall.Functor.Base
open import Cubical.Categories.LocallySmall.Functor.Constant
open import Cubical.Categories.LocallySmall.Instances.Unit
open import Cubical.Categories.LocallySmall.Constructions.DisplayOverTerminal.Base
open import Cubical.Categories.LocallySmall.Constructions.Total.Properties
open import Cubical.Categories.LocallySmall.Displayed.Category.Base
open import Cubical.Categories.LocallySmall.Displayed.Category.Notation
open import Cubical.Categories.LocallySmall.Displayed.Constructions.Reindex.Base
open import Cubical.Categories.LocallySmall.Displayed.Functor.Base
open import Cubical.Categories.LocallySmall.Displayed.Functor.Properties
open Category
module _ where
open CategoryVariables
module _
(Cᴰ : Categoryᴰ UNIT Cobᴰ CHom-ℓᴰ) where
private
module Cᴰ = CategoryᴰNotation Cᴰ
CatᴰOverUNIT→Fib : Functor (CatᴰOverUNIT→Cat Cᴰ) Cᴰ.v[ _ ]
CatᴰOverUNIT→Fib .Functor.F-ob = λ z → z
CatᴰOverUNIT→Fib .Functor.F-hom = λ z → z
CatᴰOverUNIT→Fib .Functor.F-id = sym $ transportRefl _
CatᴰOverUNIT→Fib .Functor.F-seq _ _ = sym $ transportRefl _
CatᴰOverUNIT→FibEq : Functor (CatᴰOverUNIT→Cat Cᴰ) (fibEq Cᴰ Eq.refl _)
CatᴰOverUNIT→FibEq .Functor.F-ob = λ z → z
CatᴰOverUNIT→FibEq .Functor.F-hom = λ z → z
CatᴰOverUNIT→FibEq .Functor.F-id = refl
CatᴰOverUNIT→FibEq .Functor.F-seq _ _ = refl
∫→CatᴰOverUNIT : Functor Cᴰ.∫C (CatᴰOverUNIT→Cat Cᴰ)
∫→CatᴰOverUNIT .Functor.F-ob = λ z → z .Σω.snd
∫→CatᴰOverUNIT .Functor.F-hom = λ z → z .snd
∫→CatᴰOverUNIT .Functor.F-id = refl
∫→CatᴰOverUNIT .Functor.F-seq = λ _ _ → refl
module _
{D : Category Dob DHom-ℓ}
{Dᴰ : Categoryᴰ D Dobᴰ DHom-ℓᴰ}
{d : Dob}
(Fᴰ : Functorᴰ introUNIT Dᴰ Cᴰ)
where
private
module Dᴰ = CategoryᴰNotation Dᴰ
CatᴰOverUNIT-intro : Functor Dᴰ.∫C (CatᴰOverUNIT→Cat Cᴰ)
CatᴰOverUNIT-intro = ∫→CatᴰOverUNIT ∘F Functorᴰ.∫F Fᴰ
module _
{D : Category Dob DHom-ℓ}
{Dᴰ : Categoryᴰ D Dobᴰ DHom-ℓᴰ}
{d : Dob}
(Fᴰ : Functorᴰ (elimUNIT d) Cᴰ Dᴰ)
where
private
module Dᴰ = CategoryᴰNotation Dᴰ
CatᴰOverUNIT-elim : Functor (CatᴰOverUNIT→Cat Cᴰ) Dᴰ.v[ d ]
CatᴰOverUNIT-elim =
Fv Fᴰ (liftω tt) ∘F CatᴰOverUNIT→Fib