module Cubical.Categories.LocallySmall.Displayed.Constructions.Weaken.Properties where
open import Cubical.Foundations.Prelude
import Cubical.Data.Equality as Eq
import Cubical.Data.Equality.More as Eq
open import Cubical.Data.Sigma
open import Cubical.Data.Sigma.More
open import Cubical.Categories.LocallySmall.Category.Base
open import Cubical.Categories.LocallySmall.Functor.Base
open import Cubical.Categories.LocallySmall.Displayed.Category.Base
open import Cubical.Categories.LocallySmall.Displayed.Functor.Base
open import Cubical.Categories.LocallySmall.Displayed.Constructions.Weaken.Base
open import Cubical.Categories.LocallySmall.Variables.Category
open Category
open Categoryᴰ
open Σω
module _ (C : Category Cob CHom-ℓ)(D : Category Dob DHom-ℓ) where
private
module C = CategoryNotation C
module D = CategoryNotation D
open Functor
∫weakenSwap : Functor (∫C (weaken C D)) (∫C (weaken D C))
∫weakenSwap .F-ob = λ z → z .snd , z .fst
∫weakenSwap .F-hom = λ z → z .snd , z .fst
∫weakenSwap .F-id = refl
∫weakenSwap .F-seq = λ _ _ → refl