module Cubical.Categories.LocallySmall.Displayed.Presheaf.GloballySmall.Uncurried.Representable where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.More hiding (_≡[_]_; rectify)
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Function
open import Cubical.Data.Sigma
open import Cubical.Data.Sigma.More
import Cubical.Categories.Category.Base as SmallCat
import Cubical.Categories.Presheaf.Base as SmallPsh
import Cubical.Categories.Functor.Base as SmallFunctor
open import Cubical.Categories.LocallySmall.Category.Base
open import Cubical.Categories.LocallySmall.Category.Small
open import Cubical.Categories.LocallySmall.Variables
open import Cubical.Categories.LocallySmall.Instances.Level
open import Cubical.Categories.LocallySmall.Instances.Functor.IntoFiberCategory
open import Cubical.Categories.LocallySmall.Presheaf.GloballySmall.IntoFiberCategory.Base
open import Cubical.Categories.LocallySmall.Functor
open import Cubical.Categories.LocallySmall.Functor.Constant
open import Cubical.Categories.LocallySmall.NaturalTransformation.IntoFiberCategory
open import Cubical.Categories.LocallySmall.Displayed.Category.Base
open import Cubical.Categories.LocallySmall.Displayed.Category.Small
open import Cubical.Categories.LocallySmall.Displayed.Category.Properties
open import Cubical.Categories.LocallySmall.Displayed.Instances.Sets.Base
open import Cubical.Categories.LocallySmall.Displayed.Section.Base
open import Cubical.Categories.LocallySmall.Displayed.Constructions.Total
open import Cubical.Categories.LocallySmall.Displayed.Constructions.BinProduct.Base
open import Cubical.Categories.LocallySmall.Displayed.Constructions.Graph.Presheaf.GloballySmall.Base
open import Cubical.Categories.LocallySmall.Displayed.Presheaf.GloballySmall.Uncurried.Base
open Σω
open Liftω
open Functor
module _ where
open SmallCategoryVariables
open SmallCategory
module _
{c : C .ob}
(Cᴰ : SmallCategoryᴰ C ℓCᴰ ℓCᴰ')
where
private
module C = SmallCategory C
module Cᴰ = SmallCategoryᴰ Cᴰ
_[-][-,_] : Cᴰ.obᴰ c → Presheafⱽ c Cᴰ ℓCᴰ'
_[-][-,_] cᴰ .F-ob (liftω (x , xᴰ , f)) = liftω (Cᴰ.Hom[ f ][ liftω xᴰ , liftω cᴰ ] , Cᴰ.isSetHomᴰ)
_[-][-,_] cᴰ .F-hom (f , fᴰ , the-≡) gᴰ =
Cᴰ.reind the-≡ (fᴰ Cᴰ.⋆ᴰ gᴰ)
_[-][-,_] cᴰ .F-id = funExt λ gᴰ →
Cᴰ.rectify $ Cᴰ.≡out $ (sym $ Cᴰ.reind-filler _ _) ∙ Cᴰ.⋆IdLᴰ _
_[-][-,_] cᴰ .F-seq (f , fᴰ , the-≡) (g , gᴰ , the-≡') = funExt λ gᴰ →
Cᴰ.rectify $ Cᴰ.≡out $
(sym $ Cᴰ.reind-filler _ _)
∙ Cᴰ.⋆Assocᴰ _ _ _
∙ Cᴰ.⟨⟩⋆⟨ Cᴰ.reind-filler _ _ ⟩
∙ Cᴰ.reind-filler _ _