{-# OPTIONS --lossy-unification #-}
module Cubical.Categories.Presheaf.Constructions.BinProduct.LocalRepresentability where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Structure
import Cubical.Data.Equality as Eq
import Cubical.Data.Equality.More as Eq
open import Cubical.Data.Sigma
open import Cubical.Data.Unit
open import Cubical.Categories.Category
open import Cubical.Categories.Functor
open import Cubical.Categories.Profunctor.General
open import Cubical.Categories.FunctorComprehension
open import Cubical.Categories.NaturalTransformation
open import Cubical.Categories.NaturalTransformation.Cartesian
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Constructions.BinProduct
open import Cubical.Categories.Constructions.BinProduct.More
open import Cubical.Categories.Instances.Sets.More
open import Cubical.Categories.Presheaf.Base
open import Cubical.Categories.Presheaf.Constructions.BinProduct.Base
open import Cubical.Categories.Presheaf.Constructions.Reindex
open import Cubical.Categories.Presheaf.More
open import Cubical.Categories.Presheaf.Morphism.Alt
open import Cubical.Categories.Presheaf.Representable
open import Cubical.Categories.Presheaf.Representable.More
open import Cubical.Categories.Profunctor.Relator
open import Cubical.Categories.Bifunctor
private
variable
ℓ ℓ' ℓA ℓB ℓA' ℓB' ℓC ℓC' ℓD ℓD' ℓP ℓQ ℓR ℓS : Level
open Functor
open PshHom
open PshIso
open NatTrans
open NatIso
module _ {C : Category ℓ ℓ'} where
private
module C = Category C
LRProf : (P : Presheaf C ℓP) → Profunctor C C (ℓ-max ℓ' ℓP)
LRProf P .F-ob x = (C [-, x ]) ×Psh P
LRProf P .F-hom f = PshHom→NatTrans (×PshIntro (π₁ _ _ ⋆PshHom yoRec _ f) (π₂ _ _))
LRProf P .F-id = makeNatTransPath $ funExt λ y → funExt λ f → ΣPathP (C.⋆IdR _ , refl)
LRProf P .F-seq f g = makeNatTransPath $ funExt λ y → funExt λ h →
ΣPathP ((sym $ C.⋆Assoc (π₁ (C [-, _ ]) P .N-ob y h) f g) , refl)
LocallyRepresentable : Presheaf C ℓP → Type _
LocallyRepresentable P = UniversalElements $ LRProf P
LRPresheaf : ∀ (C : Category ℓ ℓ') (ℓP : Level) → Type _
LRPresheaf C ℓP = Σ (Presheaf C ℓP) LocallyRepresentable
module _ {C : Category ℓ ℓ'} ((P , _×P) : LRPresheaf C ℓP) where
private
module C = Category C
module P = PresheafNotation P
open UniversalElementNotation
LRPsh→Functor : Functor C C
LRPsh→Functor = FunctorComprehension (LRProf P) _×P
πLRF : NatTrans LRPsh→Functor Id
πLRF .N-ob Γ = (Γ ×P) .element .fst
πLRF .N-hom {Δ}{Γ} γ = PathPΣ (β (Γ ×P)) .fst
πLRFCart : isCartesian πLRF
πLRFCart {Δ} {Γ} γ {Θ} γ,P δ γ,P⋆π≡δ⋆γ .fst .fst =
intro (Δ ×P) (δ , (γ,P P.⋆ (Γ ×P) .element .snd))
πLRFCart {Δ} {Γ} γ {Θ} γ,P δ γ,P⋆π≡δ⋆γ .fst .snd .fst = sym $ extensionality (Γ ×P) $ ΣPathP
( C.⋆Assoc _ _ _ ∙ C.⟨ refl ⟩⋆⟨ PathPΣ (β (Γ ×P)) .fst ⟩
∙ sym (C.⋆Assoc _ _ _) ∙ C.⟨ PathPΣ (β (Δ ×P)) .fst ⟩⋆⟨ refl ⟩
∙ (sym γ,P⋆π≡δ⋆γ)
, P.⋆Assoc _ _ _ ∙ P.⟨⟩⋆⟨ PathPΣ (β (Γ ×P)) .snd ⟩
∙ PathPΣ (β (Δ ×P)) .snd
)
πLRFCart {Δ} {Γ} γ {Θ} γ,P δ γ,P⋆π≡δ⋆γ .fst .snd .snd = sym $ PathPΣ (β (Δ ×P)) .fst
πLRFCart {Δ} {Γ} γ {Θ} γ,P δ γ,P⋆π≡δ⋆γ .snd (δ~ , (γ,P≡δ~⋆⟨γ⟩ , δ≡δ~⋆π)) = ΣPathPProp (λ _ → isProp× (C.isSetHom _ _) (C.isSetHom _ _)) $
intro≡ (Δ ×P) (ΣPathP (δ≡δ~⋆π , (P.⟨ γ,P≡δ~⋆⟨γ⟩ ⟩⋆⟨⟩ ∙ P.⋆Assoc _ _ _ ∙ P.⟨⟩⋆⟨ PathPΣ (β (Γ ×P)) .snd ⟩ )))
module _ {R : Presheaf C ℓR} where
private module R = PresheafNotation R
⟪-⟫×P : PshHet LRPsh→Functor R (R ×Psh P)
⟪-⟫×P .N-ob Γ r .fst = πLRF .N-ob Γ R.⋆ r
⟪-⟫×P .N-ob Γ r .snd = (Γ ×P) .element .snd
⟪-⟫×P .N-hom Δ Γ γ r = ΣPathP
( (sym $ sym (R.⋆Assoc _ _ _) ∙ R.⟨ fst $ PathPΣ $ β $ Γ ×P ⟩⋆⟨⟩ ∙ R.⋆Assoc _ _ _)
, (sym $ snd $ PathPΣ $ β $ Γ ×P))
LRPshIso→NatIso : ∀ {C : Category ℓ ℓ'}
(P : LRPresheaf C ℓP)
(Q : LRPresheaf C ℓQ)
→ (α : PshIso (P .fst) (Q .fst))
→ NatIso (LRPsh→Functor P) (LRPsh→Functor Q)
LRPshIso→NatIso P Q α = FunctorComprehension-NatIso (LRProf (P .fst)) (LRProf (Q .fst)) (P .snd) (Q .snd)
(pshiso (mkRelatorHom (λ c d z → z .fst , α .trans .N-ob c (z .snd))
(λ c c' d f p → ΣPathP (refl , (α .trans .N-hom c c' f (p .snd))))
(λ _ _ _ _ _ → refl))
λ x → (λ z → z .fst , α .nIso (x .fst) .fst (z .snd)) , ((λ b → ΣPathP (refl , (α .nIso (x .fst) .snd .fst (b .snd)))) , λ b → ΣPathP (refl , α .nIso (x .fst) .snd .snd (b .snd))))
module _ {C : Category ℓC ℓC'}{D : Category ℓD ℓD'} (F : Functor C D) where
private
module C = Category C
module D = Category D
module _ (P : Presheaf C ℓP) (Q : Presheaf D ℓQ) (α : PshHet F P Q)
where
presLRCone : ∀ {x : C.ob}
→ PshHom ((C [-, x ]) ×Psh P) (reindPsh F ((D [-, F ⟅ x ⟆ ]) ×Psh Q))
presLRCone .N-ob = λ c (f , p) → (F ⟪ f ⟫) , (α .N-ob _ p)
presLRCone .N-hom = λ _ _ f (g , p) → ΣPathP ((F .F-seq f g) , (α .N-hom _ _ f p))
presLRCone-Nat : ProfunctorHom (LRProf P) (reindPshF F ∘F LRProf Q ∘F F)
presLRCone-Nat = mkRelatorHom
(λ c d → presLRCone .N-ob c)
(λ c c' d → presLRCone .N-hom c c')
λ c d d' (g , p) f → ΣPathP ((F .F-seq g f) , refl)
module _ ((P , _×P) : LRPresheaf C ℓP) (Q : Presheaf D ℓQ)
(α : PshHet F P Q)
where
open UniversalElement
presLR : Type _
presLR = ∀ (x : C.ob)
→ becomesUniversal (presLRCone P Q α {x})
((x ×P) .vertex)
((x ×P) .element)
module _ (P : LRPresheaf C ℓP) (Q : LRPresheaf D ℓQ)
(α : PshHet F (P .fst) (Q .fst))
where
presLR→NatIso : presLR P (Q .fst) α → NatIso (LRPsh→Functor Q ∘F F) (F ∘F LRPsh→Functor P)
presLR→NatIso F⟪-×P⟫≅F⟪-⟫×Q = seqNatIso {G = FunctorComprehension (LRProf (Q .fst) ∘F F) (λ c → Q .snd (F-ob F c))}
(record { trans = natTrans (λ x → D.id) λ _ → idTrans (Id {C = D}) .N-hom _ ; nIso = λ x → idNatIso (Id {C = D}) .nIso _ })
(symNatIso (preserves-UE→NatIso (LRProf (P .fst)) (LRProf (Q .fst) ∘F F) F
(presLRCone-Nat (P .fst) (Q .fst) α)
(P .snd) (λ c → Q .snd (F-ob F c))
F⟪-×P⟫≅F⟪-⟫×Q))
module _ (P : LRPresheaf C ℓP) (Q : LRPresheaf D ℓQ)
(α : PshHet F (P .fst) (Q .fst))
where
open UniversalElement
private
module Q = PresheafNotation (Q .fst)
strictPresLR→NatIso :
(F⟅c×P⟆≡Fc×Q : ∀ c → F ⟅ P .snd c .vertex ⟆ Eq.≡ Q .snd (F ⟅ c ⟆) .vertex)
→ (F⟅π⟆≡π : ∀ c →
Eq.mixedHEq (Eq.ap (λ Fc×Q → (D [ Fc×Q , F ⟅ c ⟆ ]) × Q.p[ Fc×Q ]) (F⟅c×P⟆≡Fc×Q c))
(F ⟪ P .snd c .element .fst ⟫ , α .N-ob _ (P .snd c .element .snd))
(Q .snd (F ⟅ c ⟆) .element))
→ NatIso (LRPsh→Functor Q ∘F F) (F ∘F LRPsh→Functor P)
strictPresLR→NatIso F⟅c×P⟆≡Fc×Q F⟅π⟆≡π = presLR→NatIso P Q α
λ c → strictlyPreservesUniversalElement (presLRCone (P .fst) (Q .fst) α)
(P .snd c)
(Q .snd (F ⟅ c ⟆))
(F⟅c×P⟆≡Fc×Q c)
(F⟅π⟆≡π c)