{-# OPTIONS --lossy-unification #-}
module Cubical.Categories.Presheaf.Morphism.Lift where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.More
open import Cubical.Foundations.Transport hiding (pathToIso)
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Isomorphism.More
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Function
open import Cubical.Foundations.Structure
open import Cubical.Functions.FunExtEquiv
open import Cubical.Reflection.RecordEquiv
open import Cubical.Reflection.RecordEquiv.More
open import Cubical.Data.Sigma
import Cubical.Data.Equality as Eq
open import Cubical.Categories.Category renaming (isIso to isIsoC)
open import Cubical.Categories.Constructions.Elements
open import Cubical.Categories.Constructions.Lift
open import Cubical.Categories.Functor
open import Cubical.Categories.Instances.Functors
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Instances.Sets.More
open import Cubical.Categories.Limits
open import Cubical.Categories.Yoneda
open import Cubical.Categories.NaturalTransformation hiding (_∘ˡ_; _∘ˡⁱ_)
open import Cubical.Categories.Presheaf.Base
open import Cubical.Categories.Presheaf.More
open import Cubical.Categories.Presheaf.Representable
open import Cubical.Categories.Presheaf.Properties renaming (PshIso to PshIsoLift)
open import Cubical.Categories.Presheaf.Constructions.Lift
open import Cubical.Categories.Presheaf.Morphism.Alt
open import Cubical.Categories.Profunctor.General
open import Cubical.Categories.Bifunctor
private
variable
ℓc ℓc' ℓd ℓd' ℓp ℓq ℓr ℓs : Level
open Category
open Contravariant
open UniversalElement
open PshHom
open PshIso
module _ {C : Category ℓc ℓc'} (P : Presheaf C ℓp) ℓq where
LiftPshIso : PshIso P (LiftPsh P ℓq)
LiftPshIso .trans .N-ob = λ c z → lift z
LiftPshIso .trans .N-hom = λ _ _ _ _ → refl
LiftPshIso .nIso c .fst = λ z → z .lower
LiftPshIso .nIso c .snd .fst _ = refl
LiftPshIso .nIso c .snd .snd _ = refl
module _ {C : Category ℓc ℓc'} (P : Presheaf C ℓp) {ℓq} {ℓr} where
PshHomPsh-LiftPshIso :
PshIso
(PshHomPsh {ℓp = ℓr} P)
(PshHomPsh {ℓp = ℓr} (LiftPsh P ℓq))
PshHomPsh-LiftPshIso =
Isos→PshIso (λ Q → postcomp⋆PshHom-Iso (LiftPshIso P ℓq))
(λ _ _ _ _ → ⋆PshHomAssoc _ _ _)