module Cubical.Categories.Displayed.Presheaf.Constructions.Lift.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Data.Unit
import Cubical.Data.Equality as Eq
open import Cubical.Categories.Category.Base
open import Cubical.Categories.Functor.Base
open import Cubical.Categories.Constructions.Fiber
open import Cubical.Categories.Presheaf.Base
open import Cubical.Categories.Presheaf.Constructions
open import Cubical.Categories.Presheaf.Morphism.Alt
open import Cubical.Categories.Presheaf.Representable
open import Cubical.Categories.Presheaf.Representable.More
open import Cubical.Categories.Presheaf.More
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Functor
open import Cubical.Categories.Displayed.Functor.More
open import Cubical.Categories.Displayed.Bifunctor
open import Cubical.Categories.Displayed.Instances.Functor.Base
open import Cubical.Categories.Displayed.Instances.Sets.Base
open import Cubical.Categories.Displayed.Presheaf.Base
open import Cubical.Categories.Displayed.Presheaf.Representable
open import Cubical.Categories.Displayed.BinProduct
open import Cubical.Categories.Displayed.Constructions.BinProduct.More
open import Cubical.Categories.Displayed.Constructions.Reindex.Base
renaming (π to Reindexπ; reindex to CatReindex)
private
variable
ℓ ℓ' ℓᴰ ℓᴰ' : Level
ℓA ℓB ℓAᴰ ℓBᴰ : Level
ℓC ℓC' ℓCᴰ ℓCᴰ' : Level
ℓD ℓD' ℓDᴰ ℓDᴰ' : Level
ℓP ℓQ ℓR ℓPᴰ ℓPᴰ' ℓQᴰ ℓQᴰ' ℓRᴰ : Level
open Bifunctorᴰ
open Functorᴰ
open PshHom
open PshIso
module _ {C : Category ℓC ℓC'} {Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ'} where
private
module C = Category C
module Cᴰ = Fibers Cᴰ
module _ {P : Presheaf C ℓP} (Pᴰ : Presheafᴰ P Cᴰ ℓPᴰ) where
private
module Pᴰ = PresheafᴰNotation Pᴰ
LiftPshᴰ : (ℓ' : Level) → Presheafᴰ P Cᴰ (ℓ-max ℓPᴰ ℓ')
LiftPshᴰ ℓ' = LiftFᴰ ℓ' ∘Fⱽᴰ Pᴰ