module Cubical.Categories.Displayed.Presheaf.Constructions.Reindex.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Data.Unit
import Cubical.Data.Equality as Eq
open import Cubical.Categories.Category.Base
open import Cubical.Categories.Functor.Base
open import Cubical.Categories.Constructions.Fiber
open import Cubical.Categories.Presheaf.Base
open import Cubical.Categories.Presheaf.Constructions
open import Cubical.Categories.Presheaf.Morphism.Alt
open import Cubical.Categories.Presheaf.Representable
open import Cubical.Categories.Presheaf.Representable.More
open import Cubical.Categories.Presheaf.More
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Functor
open import Cubical.Categories.Displayed.Functor.More
open import Cubical.Categories.Displayed.Bifunctor
open import Cubical.Categories.Displayed.Instances.Functor.Base
open import Cubical.Categories.Displayed.Instances.Sets.Base
open import Cubical.Categories.Displayed.Presheaf.Base
open import Cubical.Categories.Displayed.Presheaf.Representable
open import Cubical.Categories.Displayed.Presheaf.Morphism
open import Cubical.Categories.Displayed.Presheaf.Constructions.ReindexFunctor.Base
open import Cubical.Categories.Displayed.BinProduct
open import Cubical.Categories.Displayed.Constructions.BinProduct.More
open import Cubical.Categories.Displayed.Constructions.Reindex.Base
renaming (π to Reindexπ; reindex to CatReindex)
private
variable
ℓ ℓ' ℓᴰ ℓᴰ' : Level
ℓA ℓB ℓAᴰ ℓBᴰ : Level
ℓC ℓC' ℓCᴰ ℓCᴰ' : Level
ℓD ℓD' ℓDᴰ ℓDᴰ' : Level
ℓP ℓQ ℓR ℓPᴰ ℓPᴰ' ℓQᴰ ℓQᴰ' ℓRᴰ : Level
open Bifunctorᴰ
open Functorᴰ
open PshHom
open PshIso
module _ {C : Category ℓC ℓC'} {Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ'} where
private
module C = Category C
module Cᴰ = Fibers Cᴰ
module _ {P : Presheaf C ℓP}{Q : Presheaf C ℓQ}
(α : PshHom P Q) (Qᴰ : Presheafᴰ Q Cᴰ ℓQᴰ)
where
private
module Qᴰ = PresheafᴰNotation Qᴰ
open Functorᴰ
reind : Presheafᴰ P Cᴰ ℓQᴰ
reind .F-obᴰ {x} xᴰ p = Qᴰ .F-obᴰ xᴰ (α .N-ob x p)
reind .F-homᴰ {y} {x} {f} {yᴰ} {xᴰ} fᴰ p qᴰ =
Qᴰ.reind (sym $ α .N-hom _ _ _ _) (fᴰ Qᴰ.⋆ᴰ qᴰ)
reind .F-idᴰ = funExt λ p → funExt λ qᴰ → Qᴰ.rectify $ Qᴰ.≡out $
(sym $ Qᴰ.reind-filler _ _)
∙ Qᴰ.⋆IdL _
reind .F-seqᴰ fᴰ gᴰ = funExt λ p → funExt λ qᴰ → Qᴰ.rectify $ Qᴰ.≡out $
(sym $ Qᴰ.reind-filler _ _)
∙ Qᴰ.⋆Assoc _ _ _
∙ Qᴰ.⟨ refl ⟩⋆⟨ Qᴰ.reind-filler _ _ ⟩
∙ Qᴰ.reind-filler _ _
module _ {Q : Presheaf C ℓQ} where
private
module Q = PresheafNotation Q
module _ {c : C.ob} (q : Q.p[ c ]) (Qᴰ : Presheafᴰ Q Cᴰ ℓQᴰ) where
private
module Qᴰ = PresheafᴰNotation Qᴰ
open Functorᴰ
reindYo : Presheafⱽ c Cᴰ ℓQᴰ
reindYo = reind (yoRec Q q) Qᴰ
module _
{C : Category ℓC ℓC'}
{D : Category ℓD ℓD'}{Dᴰ : Categoryᴰ D ℓDᴰ ℓDᴰ'}
{Q : Presheaf D ℓQ}
(F : Functor C D) (Qᴰ : Presheafᴰ Q Dᴰ ℓQᴰ)
where
reindFunc : Presheafᴰ (Q ∘F (F ^opF)) (CatReindex Dᴰ F) ℓQᴰ
reindFunc = reindPshᴰFunctor (Reindexπ _ _) Qᴰ
open Category
module _
{C : Category ℓC ℓC'}
{D : Category ℓD ℓD'}{Dᴰ : Categoryᴰ D ℓDᴰ ℓDᴰ'}
{F : Functor C D}
{P : Presheaf C ℓP}{Q : Presheaf D ℓQ}
(α : PshHet F P Q)(Qᴰ : Presheafᴰ Q Dᴰ ℓQᴰ)
where
reindHet : Presheafᴰ P (CatReindex Dᴰ F) ℓQᴰ
reindHet = reind α $ reindPshᴰFunctor (Reindexπ Dᴰ F) Qᴰ
module _
{C : Category ℓC ℓC'}{Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ'}
{D : Category ℓD ℓD'}{Dᴰ : Categoryᴰ D ℓDᴰ ℓDᴰ'}
{F : Functor C D}
{P : Presheaf C ℓP}{Q : Presheaf D ℓQ}
(α : PshHet F P Q)
(Fᴰ : Functorᴰ F Cᴰ Dᴰ)
(Qᴰ : Presheafᴰ Q Dᴰ ℓQᴰ)
where
reindHet' : Presheafᴰ P Cᴰ ℓQᴰ
reindHet' = reind α $ (Qᴰ ∘Fᴰ (Fᴰ ^opFᴰ))
module _
{C : Category ℓC ℓC'}
{D : Category ℓD ℓD'}{Dᴰ : Categoryᴰ D ℓDᴰ ℓDᴰ'}
{x : C .ob}
(F : Functor C D) (Qᴰ : Presheafⱽ (F ⟅ x ⟆) Dᴰ ℓQᴰ)
where
reindⱽFunc : Presheafⱽ x (CatReindex Dᴰ F) ℓQᴰ
reindⱽFunc = reindHet (Functor→PshHet F x) Qᴰ