{-# OPTIONS --lossy-unification #-}
module Cubical.Categories.Displayed.Presheaf.Uncurried.UniversalProperties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv.Dependent
open import Cubical.Foundations.More
open import Cubical.Data.Sigma
open import Cubical.Categories.Category.Base
open import Cubical.Categories.Functor.Base
open import Cubical.Categories.Constructions.Fiber
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Limits.BinProduct.More
open import Cubical.Categories.Limits.Terminal.More
open import Cubical.Categories.Profunctor.General
open import Cubical.Categories.Presheaf.Base
open import Cubical.Categories.Presheaf.Constructions.BinProduct
open import Cubical.Categories.Presheaf.Constructions.Reindex
open import Cubical.Categories.Presheaf.Constructions.Unit
open import Cubical.Categories.Presheaf.Representable
open import Cubical.Categories.Presheaf.Representable.More
open import Cubical.Categories.Presheaf.More
open import Cubical.Categories.Presheaf.Morphism.Alt
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Functor
open import Cubical.Categories.Displayed.Functor.More
open import Cubical.Categories.Displayed.Presheaf.Uncurried.Base
open import Cubical.Categories.Displayed.Presheaf.Uncurried.Constructions
open import Cubical.Categories.Displayed.Presheaf.Uncurried.Fibration
open import Cubical.Categories.Displayed.Presheaf.Uncurried.Representable
private
variable
ℓ ℓ' ℓᴰ ℓᴰ' : Level
ℓA ℓB ℓAᴰ ℓBᴰ : Level
ℓC ℓC' ℓCᴰ ℓCᴰ' : Level
ℓD ℓD' ℓDᴰ ℓDᴰ' : Level
ℓP ℓQ ℓR ℓPᴰ ℓPᴰ' ℓQᴰ ℓQᴰ' ℓRᴰ : Level
open isIso
open PshHom
open PshIso
open UniversalElementNotation
open UniversalElement
module _ {C : Category ℓC ℓC'} (Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ') where
private
module C = Category C
module Cᴰ = Fibers Cᴰ
Terminalⱽ : ∀ (x : C.ob) → Type _
Terminalⱽ x = Representableⱽ Cᴰ x UnitPshᴰ
Terminalsⱽ : Type _
Terminalsⱽ = ∀ x → Terminalⱽ x
TerminalᴰSpec : Presheafᴰ UnitPsh Cᴰ ℓ-zero
TerminalᴰSpec = UnitPshᴰ
Terminalᴰ : ∀ (term : Terminal' C) → Type _
Terminalᴰ = UniversalElementᴰ Cᴰ UnitPsh UnitPshᴰ
Terminalⱽ→ᴰ : ∀ (term : Terminal' C) → Terminalⱽ (term .vertex) → Terminalᴰ term
Terminalⱽ→ᴰ term termⱽ = Representableⱽ→UniversalElementᴰ Cᴰ UnitPsh UnitPshᴰ term
(termⱽ .fst , termⱽ .snd ⋆PshIso (invPshIso $ reindPsh-Unit _))
BinProductⱽSpec : ∀ {x} → (xᴰ yᴰ : Cᴰ.ob[ x ]) → Presheafⱽ x Cᴰ (ℓ-max ℓCᴰ' ℓCᴰ')
BinProductⱽSpec {x} xᴰ yᴰ = (Cᴰ [-][-, xᴰ ]) ×ⱽPsh (Cᴰ [-][-, yᴰ ])
BinProductⱽ : ∀ {x} → (xᴰ yᴰ : Cᴰ.ob[ x ]) → Type _
BinProductⱽ {x} xᴰ yᴰ = Representableⱽ Cᴰ x ((Cᴰ [-][-, xᴰ ]) ×ⱽPsh (Cᴰ [-][-, yᴰ ]))
BinProductsWithⱽ : ∀ {x} (xᴰ : Cᴰ.ob[ x ]) → Type _
BinProductsWithⱽ {x} xᴰ = ∀ Γᴰ → BinProductⱽ Γᴰ xᴰ
BinProductsⱽ : Type _
BinProductsⱽ = ∀ {x} xᴰ yᴰ → BinProductⱽ {x} xᴰ yᴰ
BinProductᴰ'Spec : ∀ {A B} → (A×B : BinProduct C (A , B)) (Aᴰ : Cᴰ.ob[ A ]) (Bᴰ : Cᴰ.ob[ B ])
→ Presheafⱽ (A×B .vertex) Cᴰ _
BinProductᴰ'Spec {A}{B} A×B Aᴰ Bᴰ =
(reindPshᴰNatTrans (yoRec (C [-, A ]) (A×B .element .fst)) (Cᴰ [-][-, Aᴰ ])
×ⱽPsh reindPshᴰNatTrans (yoRec (C [-, B ]) (A×B .element .snd)) (Cᴰ [-][-, Bᴰ ]))
BinProductᴰ' : ∀ {A B} → (A×B : BinProduct C (A , B)) (Aᴰ : Cᴰ.ob[ A ]) (Bᴰ : Cᴰ.ob[ B ]) → Type _
BinProductᴰ' {A}{B} A×B Aᴰ Bᴰ = Representableⱽ Cᴰ (A×B .vertex)
(reindPshᴰNatTrans (yoRec (C [-, A ]) (A×B .element .fst)) (Cᴰ [-][-, Aᴰ ])
×ⱽPsh reindPshᴰNatTrans (yoRec (C [-, B ]) (A×B .element .snd)) (Cᴰ [-][-, Bᴰ ]))
BinProductᴰSpec : ∀ {A B} → (A×B : BinProduct C (A , B)) (Aᴰ : Cᴰ.ob[ A ]) (Bᴰ : Cᴰ.ob[ B ])
→ Presheafᴰ ((C [-, A ]) ×Psh (C [-, B ])) Cᴰ (ℓ-max ℓCᴰ' ℓCᴰ')
BinProductᴰSpec {A}{B} A×B Aᴰ Bᴰ = (Cᴰ [-][-, Aᴰ ]) ×ᴰPsh (Cᴰ [-][-, Bᴰ ])
BinProductᴰ : ∀ {A B} → (A×B : BinProduct C (A , B)) (Aᴰ : Cᴰ.ob[ A ]) (Bᴰ : Cᴰ.ob[ B ]) → Type _
BinProductᴰ {A}{B} A×B Aᴰ Bᴰ =
UniversalElementᴰ Cᴰ _ ((Cᴰ [-][-, Aᴰ ]) ×ᴰPsh (Cᴰ [-][-, Bᴰ ])) A×B
BinProductsᴰ : (bp : BinProducts C) → Type _
BinProductsᴰ bp = ∀ {A B} (Aᴰ : Cᴰ.ob[ A ]) (Bᴰ : Cᴰ.ob[ B ]) → BinProductᴰ (bp (A , B)) Aᴰ Bᴰ
BinProductᴰ'Spec≅BinProductᴰSpec :
∀ {A B} (bp : BinProduct C (A , B)) (Aᴰ : Cᴰ.ob[ A ]) (Bᴰ : Cᴰ.ob[ B ])
→ FiberwisePshIsoᴰ (asPshIso bp .trans)
(BinProductᴰ'Spec bp Aᴰ Bᴰ)
(BinProductᴰSpec bp Aᴰ Bᴰ)
BinProductᴰ'Spec≅BinProductᴰSpec {A} {B} bp Aᴰ Bᴰ =
invPshIso (×PshIso (reindPshᴰNatTrans-tri _ _ _ _ (sym $ yoRec≡ _ (sym $ C.⋆IdL _))) (reindPshᴰNatTrans-tri _ _ _ _ (sym $ yoRec≡ _ (sym $ C.⋆IdL _))))
⋆PshIso (invPshIso $ reindPsh× (Idᴰ /Fⱽ asPshIso bp .trans) (reindPshᴰNatTrans (π₁ (C [-, A ]) (C [-, B ])) (Cᴰ [-][-, Aᴰ ])) (reindPshᴰNatTrans (π₂ (C [-, A ]) (C [-, B ])) (Cᴰ [-][-, Bᴰ ])))
BinProductⱽ→ᴰ : ∀ {A B} (bp : BinProduct C (A , B)) (Aᴰ : Cᴰ.ob[ A ]) (Bᴰ : Cᴰ.ob[ B ])
→ BinProductᴰ' bp Aᴰ Bᴰ
→ BinProductᴰ bp Aᴰ Bᴰ
BinProductⱽ→ᴰ bp Aᴰ Bᴰ (Aᴰ×ᴰBᴰ , repr) =
Representableⱽ→UniversalElementᴰ Cᴰ ((C [-, _ ]) ×Psh (C [-, _ ])) ((Cᴰ [-][-, Aᴰ ]) ×ᴰPsh (Cᴰ [-][-, Bᴰ ])) bp
(Aᴰ×ᴰBᴰ , repr
⋆PshIsoⱽ BinProductᴰ'Spec≅BinProductᴰSpec bp Aᴰ Bᴰ)
module BinProductᴰNotation {A B Aᴰ Bᴰ} (A×B : BinProduct C (A , B)) (Aᴰ×ᴰBᴰ : BinProductᴰ A×B Aᴰ Bᴰ) where
private
module A×B = UniversalElementNotation A×B
open UniversalElementᴰNotation Cᴰ _ _ Aᴰ×ᴰBᴰ public
πᴰ₁ : Cᴰ [ ue.element .fst ][ Aᴰ×ᴰBᴰ .fst , Aᴰ ]
πᴰ₁ = Aᴰ×ᴰBᴰ .snd .fst .fst
πᴰ₂ : Cᴰ [ ue.element .snd ][ Aᴰ×ᴰBᴰ .fst , Bᴰ ]
πᴰ₂ = Aᴰ×ᴰBᴰ .snd .fst .snd
×βᴰ₁ : ∀ {Γ Γᴰ}
{f : C [ Γ , A ]}
{g : C [ Γ , B ]}
(fᴰ : Cᴰ [ f ][ Γᴰ , Aᴰ ])
(gᴰ : Cᴰ [ g ][ Γᴰ , Bᴰ ])
→ (introᴰ (fᴰ , gᴰ) Cᴰ.⋆ᴰ πᴰ₁) Cᴰ.≡[ PathPΣ (A×B.β {p = (f , g)}) .fst ] fᴰ
×βᴰ₁ {Γ}{Γᴰ}{f}{g} fᴰ gᴰ = Cᴰ.rectify $ Cᴰ.≡out $
Cᴰ.reind-filler _ ∙ (Cᴰ.≡in $ PathPΣ (βᴰ {p = (f , g)} (fᴰ , gᴰ)) .fst)
×βᴰ₂ : ∀ {Γ Γᴰ}
{f : C [ Γ , A ]}
{g : C [ Γ , B ]}
(fᴰ : Cᴰ [ f ][ Γᴰ , Aᴰ ])
(gᴰ : Cᴰ [ g ][ Γᴰ , Bᴰ ])
→ (introᴰ (fᴰ , gᴰ) Cᴰ.⋆ᴰ πᴰ₂) Cᴰ.≡[ PathPΣ (A×B.β {p = (f , g)}) .snd ] gᴰ
×βᴰ₂ {Γ}{Γᴰ}{f}{g} fᴰ gᴰ = Cᴰ.rectify $ Cᴰ.≡out $
Cᴰ.reind-filler _ ∙ (Cᴰ.≡in $ PathPΣ (βᴰ {p = (f , g)} (fᴰ , gᴰ)) .snd)
×ηᴰ : ∀ {Γ Γᴰ}
→ {f : C [ Γ , A×B .vertex ]}
→ (fᴰ : Cᴰ [ f ][ Γᴰ , Aᴰ×ᴰBᴰ .fst ])
→ fᴰ Cᴰ.≡[ A×B.η {f = f} ] introᴰ ((fᴰ Cᴰ.⋆ᴰ πᴰ₁) , (fᴰ Cᴰ.⋆ᴰ πᴰ₂))
×ηᴰ {Γ} {Γᴰ} {f} fᴰ = Cᴰ.rectify $ Cᴰ.≡out $
Cᴰ.≡in (ηᴰ {f = f} fᴰ)
∙ cong (∫PshIsoᴰ (asReprᴰ .snd) .nIso _ .fst)
(ΣPathPᴰ
(sym $ Cᴰ.reind-filler _)
(sym $ Cᴰ.reind-filler _))
module BinProductsᴰNotation (bp : BinProducts C) (bpᴰ : BinProductsᴰ bp) where
_×ᴰ_ : ∀ {A B} (Aᴰ : Cᴰ.ob[ A ]) (Bᴰ : Cᴰ.ob[ B ]) → Cᴰ.ob[ bp (A , B) .vertex ]
Aᴰ ×ᴰ Bᴰ = bpᴰ Aᴰ Bᴰ .fst
private
module BPNotation {A : C.ob}{B : C.ob} {Aᴰ : Cᴰ.ob[ A ]}{Bᴰ : Cᴰ.ob[ B ]}
= BinProductᴰNotation (bp (A , B)) (bpᴰ Aᴰ Bᴰ)
open BPNotation public