{-# OPTIONS --lossy-unification #-}
module Cubical.Categories.Displayed.Presheaf.Uncurried.Representable where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Structure
open import Cubical.Foundations.More hiding (_≡[_]_; rectify)
open import Cubical.Foundations.HLevels.More
open import Cubical.Data.Unit
open import Cubical.Data.Sigma
import Cubical.Data.Equality as Eq
open import Cubical.Categories.Category.Base
open import Cubical.Categories.Functor.Base
open import Cubical.Categories.Constructions.Fiber
open import Cubical.Categories.Constructions.TotalCategory
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.NaturalTransformation
open import Cubical.Categories.Presheaf.Base
open import Cubical.Categories.Presheaf.Constructions
open import Cubical.Categories.Presheaf.Morphism.Alt
open import Cubical.Categories.Presheaf.Representable hiding (Elements)
open import Cubical.Categories.Presheaf.Representable.More
open import Cubical.Categories.Presheaf.More
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Functor
open import Cubical.Categories.Displayed.Functor.More
open import Cubical.Categories.Displayed.BinProduct
open import Cubical.Categories.Displayed.Instances.Functor.Base
open import Cubical.Categories.Displayed.Instances.Sets.Base as Curried hiding (_[-][-,_])
open import Cubical.Categories.Displayed.Constructions.BinProduct.More
open import Cubical.Categories.Displayed.Constructions.Graph.Presheaf
open import Cubical.Categories.Displayed.Presheaf.Base as Curried
hiding (Presheafᴰ; Presheafⱽ; module PresheafᴰNotation)
open import Cubical.Categories.Displayed.Presheaf.Uncurried.Base
open import Cubical.Categories.Displayed.Presheaf.Constructions.Curry
open import Cubical.Categories.Displayed.Presheaf.Representable as Curried
hiding (yoRecⱽ; yoRecⱽ-UMP; yoRecᴰ; _◁PshIsoⱽ_)
private
variable
ℓ ℓ' ℓᴰ ℓᴰ' : Level
ℓA ℓB ℓAᴰ ℓBᴰ : Level
ℓC ℓC' ℓCᴰ ℓCᴰ' : Level
ℓD ℓD' ℓDᴰ ℓDᴰ' : Level
ℓP ℓQ ℓR ℓPᴰ ℓPᴰ' ℓQᴰ ℓQᴰ' ℓRᴰ : Level
open Category
open Functor
open Functorᴰ
open PshHom
open PshIso
open Iso
module _ {C : Category ℓC ℓC'}{x : C .ob} (Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ') where
private
module Cᴰ = Fibers Cᴰ
_[-][-,_] : Cᴰ.ob[ x ] → Presheafⱽ x Cᴰ ℓCᴰ'
_[-][-,_] xᴰ = UncurryPshᴰ (C [-, x ]) Cᴰ (Cᴰ Curried.[-][-, xᴰ ])
module _ {C : Category ℓC ℓC'} {Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ'} where
private
module C = Category C
module Cᴰ = Fibers Cᴰ
module _ {P : Presheaf C ℓP} (Pᴰ : Presheafᴰ P Cᴰ ℓPᴰ) where
private
module P = PresheafNotation P
module Pᴰ = PresheafᴰNotation Cᴰ _ Pᴰ
yoRecᴰ : ∀ {x}{xᴰ}{p : P.p[ x ]} (pᴰ : Pᴰ.p[ p ][ xᴰ ]) → PshHomᴰ (yoRec P p) (Cᴰ [-][-, xᴰ ]) Pᴰ
yoRecᴰ pᴰ = Uncurry-recᴰ (Cᴰ Curried.[-][-, _ ]) Pᴰ (Curried.yoRecᴰ (CurryPshᴰ P Cᴰ Pᴰ) pᴰ)
module _ {x : C .ob} (Pⱽ : Presheafⱽ x Cᴰ ℓPᴰ) where
private
module Pⱽ = PresheafᴰNotation Cᴰ _ Pⱽ
yoRecⱽ : ∀ {xᴰ} → Pⱽ.p[ C.id ][ xᴰ ] → PshHomⱽ (Cᴰ [-][-, xᴰ ]) Pⱽ
yoRecⱽ pⱽ = Uncurry-recⱽ (Cᴰ Curried.[-][-, _ ]) Pⱽ (Curried.yoRecⱽ (CurryPshᴰ (C [-, x ]) Cᴰ Pⱽ) pⱽ)
yoRecⱽ-UMP :
∀ {xᴰ}
→ Iso (PshHomⱽ (Cᴰ [-][-, xᴰ ]) Pⱽ) (Pⱽ.p[ C.id ][ xᴰ ])
yoRecⱽ-UMP = compIso
(Uncurry-recⱽ-Iso (Cᴰ Curried.[-][-, _ ]) Pⱽ)
(Curried.yoRecⱽ-UMP (CurryPshᴰ (C [-, x ]) Cᴰ Pⱽ))
module _ {C : Category ℓC ℓC'} (Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ')
(x : C .Category.ob) (Pⱽ : Presheafⱽ x Cᴰ ℓPᴰ) where
private
module C = Category C
module Cᴰ = Fibers Cᴰ
module Pⱽ = PresheafᴰNotation Cᴰ (C [-, x ]) Pⱽ
record UniversalElementⱽ'
: Type (ℓ-max ℓC $ ℓ-max ℓC' $ ℓ-max ℓCᴰ $ ℓ-max ℓCᴰ' $ ℓPᴰ) where
field
vertexⱽ : Cᴰ.ob[ x ]
elementⱽ : Pⱽ.p[ C.id ][ vertexⱽ ]
universalⱽ : isPshIsoⱽ (Cᴰ [-][-, vertexⱽ ]) Pⱽ (yoRecⱽ Pⱽ elementⱽ)
toPshIsoⱽ : PshIsoⱽ (Cᴰ [-][-, vertexⱽ ]) Pⱽ
toPshIsoⱽ = pshiso (yoRecⱽ Pⱽ elementⱽ) universalⱽ
Representableⱽ : Type _
Representableⱽ = Σ[ xᴰ ∈ Cᴰ.ob[ x ] ] PshIsoⱽ (Cᴰ [-][-, xᴰ ]) Pⱽ
module _ {C : Category ℓC ℓC'}{D : Category ℓD ℓD'}
{Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ'}{Dᴰ : Categoryᴰ D ℓDᴰ ℓDᴰ'}
{F : Functor C D} (Fᴰ : Functorᴰ F Cᴰ Dᴰ)
where
private
module Cᴰ = Fibers Cᴰ
module Dᴰ = Fibers Dᴰ
Functorᴰ→PshHetᴰ : ∀ {x} (xᴰ : Cᴰ.ob[ x ])
→ PshHomⱽ (Cᴰ [-][-, xᴰ ]) (reindPsh (Fᴰ /FᴰYo x) (Dᴰ [-][-, Fᴰ .F-obᴰ xᴰ ]))
Functorᴰ→PshHetᴰ xᴰ .N-ob (Γ , Γᴰ , f) fᴰ = Fᴰ .F-homᴰ fᴰ
Functorᴰ→PshHetᴰ xᴰ .N-hom (Δ , Δᴰ , f) (Γ , Γᴰ , f') (γ , γᴰ , γf≡f') f'ᴰ = Dᴰ.rectify $ Dᴰ.≡out $
cong (∫F Fᴰ .F-hom) (sym $ Cᴰ.reind-filler _ _)
∙ ∫F Fᴰ .F-seq _ _
∙ Dᴰ.reind-filler _ _
FFFunctorᴰ→PshIsoᴰ : ∀ {x} (xᴰ : Cᴰ.ob[ x ])
→ FullyFaithfulᴰ Fᴰ → PshIsoⱽ (Cᴰ [-][-, xᴰ ]) (reindPsh (Fᴰ /FᴰYo x) (Dᴰ [-][-, Fᴰ .F-obᴰ xᴰ ]))
FFFunctorᴰ→PshIsoᴰ xᴰ FFFᴰ = pshiso (Functorᴰ→PshHetᴰ xᴰ)
(λ (Γ , Γᴰ , f) → (FFFᴰ f Γᴰ xᴰ .fst) , FFFᴰ f Γᴰ xᴰ .snd)
module _ {C : Category ℓC ℓC'}{Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ'}
{x}
{Pⱽ : Presheafⱽ x Cᴰ ℓPᴰ}{Qⱽ : Presheafⱽ x Cᴰ ℓQᴰ}
where
_◁PshIsoⱽ_ : Representableⱽ Cᴰ x Pⱽ → PshIsoⱽ Pⱽ Qⱽ → Representableⱽ Cᴰ x Qⱽ
(xᴰ , α) ◁PshIsoⱽ β = (xᴰ , (α ⋆PshIso β))