{-# OPTIONS --lossy-unification #-}
module Cubical.Categories.Displayed.Presheaf.Uncurried.Representable where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.Dependent
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Structure
open import Cubical.Foundations.More hiding (_≡[_]_; rectify)
open import Cubical.Foundations.HLevels.More
open import Cubical.Data.Unit
open import Cubical.Data.Sigma
import Cubical.Data.Equality as Eq
open import Cubical.Categories.Category.Base
open import Cubical.Categories.Functor.Base
open import Cubical.Categories.Constructions.Fiber
open import Cubical.Categories.Constructions.TotalCategory
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.NaturalTransformation
open import Cubical.Categories.Presheaf.Base
open import Cubical.Categories.Presheaf.Constructions
open import Cubical.Categories.Presheaf.Morphism.Alt
open import Cubical.Categories.Presheaf.Representable hiding (Elements)
open import Cubical.Categories.Presheaf.Representable.More
open import Cubical.Categories.Presheaf.More
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Functor
open import Cubical.Categories.Displayed.Functor.More
open import Cubical.Categories.Displayed.BinProduct
open import Cubical.Categories.Displayed.Instances.Functor.Base
open import Cubical.Categories.Displayed.Instances.Sets.Base as Curried hiding (_[-][-,_])
open import Cubical.Categories.Displayed.Constructions.BinProduct.More
open import Cubical.Categories.Displayed.Constructions.Graph.Presheaf
import Cubical.Categories.Displayed.Presheaf.Base as Curried
hiding (Presheafᴰ; Presheafⱽ; module PresheafᴰNotation)
open import Cubical.Categories.Displayed.Presheaf.Uncurried.Base
private
variable
ℓ ℓ' ℓᴰ ℓᴰ' : Level
ℓA ℓB ℓAᴰ ℓBᴰ : Level
ℓC ℓC' ℓCᴰ ℓCᴰ' : Level
ℓD ℓD' ℓDᴰ ℓDᴰ' : Level
ℓP ℓQ ℓR ℓPᴰ ℓPᴰ' ℓQᴰ ℓQᴰ' ℓRᴰ : Level
open Category
open Functor
open Functorᴰ
open PshHom
open PshIso
open NatTrans
open NatIso
open Iso
open isIsoOver
module _ {C : Category ℓC ℓC'}{x : C .ob} (Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ') where
private
module Cᴰ = Fibers Cᴰ
_[-][-,_] : Cᴰ.ob[ x ] → Presheafⱽ x Cᴰ ℓCᴰ'
_[-][-,_] xᴰ .F-ob (Γ , Γᴰ , f) = ( Cᴰ [ f ][ Γᴰ , xᴰ ]) , Cᴰ.isSetHomᴰ
_[-][-,_] xᴰ .F-hom {x = z , zᴰ , f}{y = y , yᴰ , g} (γ , γᴰ , γ⋆f≡g) fᴰ =
Cᴰ.reind γ⋆f≡g $ γᴰ Cᴰ.⋆ᴰ fᴰ
_[-][-,_] xᴰ .F-id =
funExt λ fᴰ → Cᴰ.rectifyOut $ Cᴰ.reind-filler⁻ _ ∙ Cᴰ.⋆IdL _
_[-][-,_] xᴰ .F-seq (γ , γᴰ , _) (σ , σᴰ , _) =
funExt λ fᴰ → Cᴰ.rectifyOut $
Cᴰ.reind-filler⁻ _
∙ Cᴰ.⋆Assoc _ _ _
∙ Cᴰ.⟨⟩⋆⟨ Cᴰ.reind-filler _ ⟩
∙ Cᴰ.reind-filler _
∫Repr-iso : ∀ {xᴰ}
→ PshIso (PresheafᴰNotation.∫ Cᴰ (C [-, x ]) (_[-][-,_] xᴰ))
((∫C Cᴰ) [-, x , xᴰ ])
∫Repr-iso {xᴰ} .trans .N-ob (y , yᴰ) (f , fᴰ) = f , fᴰ
∫Repr-iso {xᴰ} .trans .N-hom = λ _ _ _ _ → sym $ Cᴰ.reind-filler _
∫Repr-iso {xᴰ} .nIso (y , yᴰ) .fst (f , fᴰ) = f , fᴰ
∫Repr-iso {xᴰ} .nIso (y , yᴰ) .snd .fst _ = refl
∫Repr-iso {xᴰ} .nIso (y , yᴰ) .snd .snd _ = refl
module _ {C : Category ℓC ℓC'} {Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ'} where
private
module C = Category C
module Cᴰ = Fibers Cᴰ
module _ {P : Presheaf C ℓP} (Pᴰ : Presheafᴰ P Cᴰ ℓPᴰ) where
private
module P = PresheafNotation P
module Pᴰ = PresheafᴰNotation Cᴰ P Pᴰ
yoRecᴰ : ∀ {x}{xᴰ}{p : P.p[ x ]} (pᴰ : Pᴰ.p[ p ][ xᴰ ]) → PshHomᴰ (yoRec P p) (Cᴰ [-][-, xᴰ ]) Pᴰ
yoRecᴰ pᴰ .N-ob (Γ , Γᴰ , f) fᴰ = fᴰ Pᴰ.⋆ᴰ pᴰ
yoRecᴰ pᴰ .N-hom _ _ _ _ =
Pᴰ.rectifyOut $
Pᴰ.⟨ Cᴰ.reind-filler⁻ _ ⟩⋆⟨⟩
∙ Pᴰ.⋆Assocᴰ _ _ _
∙ (sym $ Pᴰ.⋆ᴰ-reind _ _ _)
module _ {x : C .ob} (Pⱽ : Presheafⱽ x Cᴰ ℓPᴰ) where
private
module Pⱽ = PresheafᴰNotation Cᴰ (C [-, x ]) Pⱽ
yoRecⱽ : ∀ {xᴰ} → Pⱽ.p[ C.id ][ xᴰ ] → PshHomⱽ (Cᴰ [-][-, xᴰ ]) Pⱽ
yoRecⱽ pⱽ .N-ob (Γ , Γᴰ , f) gᴰ = Pⱽ .F-hom (f , gᴰ , C.⋆IdR _) pⱽ
yoRecⱽ pⱽ .N-hom (Γ , Γᴰ , f) (Δ , Δᴰ , g) (h , hᴰ , h⋆g≡f) gᴰ =
congS (λ z → Pⱽ .F-hom z pⱽ)
(ΣPathP ((sym h⋆g≡f) ,
(ΣPathP ((Cᴰ.rectify $ Cᴰ.≡out $ sym $ Cᴰ.reind-filler _) ,
isProp→PathP (λ _ → C.isSetHom _ _) _ _))))
∙ funExt⁻ (Pⱽ .F-seq (g , gᴰ , C.⋆IdR g) (h , hᴰ , h⋆g≡f)) pⱽ
yoRecⱽ-UMP :
∀ {xᴰ}
→ Iso (PshHomⱽ (Cᴰ [-][-, xᴰ ]) Pⱽ) (Pⱽ.p[ C.id ][ xᴰ ])
yoRecⱽ-UMP .fun α = α .N-ob _ Cᴰ.idᴰ
yoRecⱽ-UMP .inv = yoRecⱽ
yoRecⱽ-UMP .sec pⱽ = Pⱽ.rectifyOut (Pⱽ.formal-reind-filler _ _)
yoRecⱽ-UMP {xᴰ} .ret α = makePshHomPath (funExt (λ /ob@(Γ , Γᴰ , f) → funExt (λ fᴰ →
Pⱽ.rectifyOut $ (Pⱽ.⋆ᴰ-reind _ _ _) ∙ sym (∫PshHomⱽ α .N-hom _ _ _ _)
∙ congN-obⱽ α ((sym $ Cᴰ.reind-filler _) ∙ Cᴰ.⋆IdR _))))
where ∫α = ∫PshHomⱽ α
module _ {C : Category ℓC ℓC'} (Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ')
(x : C .Category.ob) (Pⱽ : Presheafⱽ x Cᴰ ℓPᴰ) where
private
module C = Category C
module Cᴰ = Fibers Cᴰ
module Pⱽ = PresheafᴰNotation Cᴰ (C [-, x ]) Pⱽ
Representableⱽ : Type _
Representableⱽ = Σ[ xᴰ ∈ Cᴰ.ob[ x ] ] PshIsoⱽ (Cᴰ [-][-, xᴰ ]) Pⱽ
record UniversalElementⱽ'
: Type (ℓ-max ℓC $ ℓ-max ℓC' $ ℓ-max ℓCᴰ $ ℓ-max ℓCᴰ' $ ℓPᴰ) where
field
vertexⱽ : Cᴰ.ob[ x ]
elementⱽ : Pⱽ.p[ C.id ][ vertexⱽ ]
universalⱽ : isPshIsoⱽ {P = C [-, x ]} (Cᴰ [-][-, vertexⱽ ]) Pⱽ (yoRecⱽ Pⱽ elementⱽ)
toPshIsoⱽ : PshIsoⱽ (Cᴰ [-][-, vertexⱽ ]) Pⱽ
toPshIsoⱽ .trans = yoRecⱽ Pⱽ elementⱽ
toPshIsoⱽ .nIso = universalⱽ
REPRⱽ : Representableⱽ
REPRⱽ .fst = vertexⱽ
REPRⱽ .snd = toPshIsoⱽ
module _ {C : Category ℓC ℓC'} (Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ')
(P : Presheaf C ℓP) (Pᴰ : Presheafᴰ P Cᴰ ℓPᴰ) where
private
module C = Category C
module Cᴰ = Fibers Cᴰ
module P = PresheafNotation P
module Pᴰ = PresheafᴰNotation Cᴰ P Pᴰ
open UniversalElementNotation
isUniversalᴰ : ∀ (ue : UniversalElement C P) {vᴰ} (eᴰ : Pᴰ.p[ ue .element ][ vᴰ ]) → Type _
isUniversalᴰ ue {vᴰ = vᴰ} eᴰ = isPshIsoᴰ (asPshIso ue) (Cᴰ [-][-, vᴰ ]) Pᴰ (yoRecᴰ {P = P} Pᴰ eᴰ)
UniversalElementᴰ : UniversalElement C P → Type _
UniversalElementᴰ ue =
Σ[ vᴰ ∈ _ ] Σ[ eᴰ ∈ Pᴰ.p[ ue .element ][ vᴰ ] ] isUniversalᴰ ue eᴰ
Representableᴰ : (RepresentationPshIso P) → Type _
Representableᴰ (x , yx≅P) =
Σ[ xᴰ ∈ Cᴰ.ob[ x ] ] PshIsoᴰ yx≅P (Cᴰ [-][-, xᴰ ]) Pᴰ
module UniversalElementᴰNotation {ue : UniversalElement C P} (ueᴰ : UniversalElementᴰ ue) where
module ue = UniversalElementNotation ue
vertexᴰ = ueᴰ .fst
elementᴰ = ueᴰ .snd .fst
asReprᴰ : Representableᴰ (ue .vertex , asPshIso ue)
asReprᴰ = vertexᴰ , (yoRecᴰ {P = P} Pᴰ elementᴰ) , (ueᴰ .snd .snd)
introᴰ : ∀ {Γ Γᴰ}
→ {p : P.p[ Γ ]}
→ (pᴰ : Pᴰ.p[ p ][ Γᴰ ])
→ Cᴰ [ ue.intro p ][ Γᴰ , ueᴰ .fst ]
introᴰ = ueᴰ .snd .snd _ _ .inv _
opaque
cong-introᴰ :
∀ {Γ Γᴰ}
→ {p p' : P.p[ Γ ]} {pᴰ : Pᴰ.p[ p ][ Γᴰ ]}{p'ᴰ : Pᴰ.p[ p' ][ Γᴰ ]}
→ pᴰ Pᴰ.∫≡ p'ᴰ
→ introᴰ pᴰ Cᴰ.∫≡ introᴰ p'ᴰ
cong-introᴰ pᴰ≡p'ᴰ i =
(ue.intro (pᴰ≡p'ᴰ i .fst))
, (introᴰ {p = pᴰ≡p'ᴰ i .fst} (pᴰ≡p'ᴰ i .snd))
βᴰ : ∀ {Γ Γᴰ}{p : P.p[ Γ ]}
→ (pᴰ : Pᴰ.p[ p ][ Γᴰ ])
→ (introᴰ pᴰ Pᴰ.⋆ᴰ ueᴰ .snd .fst) Pᴰ.≡[ ue.β ] pᴰ
βᴰ {Γ}{Γᴰ}{p} pᴰ = Pᴰ.rectify $ ueᴰ .snd .snd Γ Γᴰ .rightInv p pᴰ
∫βᴰ : ∀ {Γ Γᴰ}{p : P.p[ Γ ]}
→ (pᴰ : Pᴰ.p[ p ][ Γᴰ ])
→ (introᴰ pᴰ Pᴰ.⋆ᴰ ueᴰ .snd .fst) Pᴰ.∫≡ pᴰ
∫βᴰ pᴰ = Pᴰ.≡in $ βᴰ pᴰ
ηᴰ : ∀ {Γ Γᴰ}{f : C [ Γ , ue.vertex ]}
→ (fᴰ : Cᴰ [ f ][ Γᴰ , ueᴰ .fst ])
→ fᴰ Cᴰ.≡[ ue.η ] introᴰ (fᴰ Pᴰ.⋆ᴰ ueᴰ .snd .fst)
ηᴰ {Γ}{Γᴰ}{f} fᴰ = symP $ Cᴰ.rectify $ ueᴰ .snd .snd Γ Γᴰ .leftInv f fᴰ
∫ηᴰ : ∀ {Γ Γᴰ}{f : C [ Γ , ue.vertex ]}
→ (fᴰ : Cᴰ [ f ][ Γᴰ , ueᴰ .fst ])
→ fᴰ Cᴰ.∫≡ introᴰ (fᴰ Pᴰ.⋆ᴰ ueᴰ .snd .fst)
∫ηᴰ fᴰ = Cᴰ.≡in $ ηᴰ fᴰ
Representableᴰ→UniversalElementᴰOverUE : (ue : UniversalElement C P)
→ Representableᴰ (ue .vertex , asPshIso ue)
→ UniversalElementᴰ ue
Representableᴰ→UniversalElementᴰOverUE ue yᴰxᴰ≅Pᴰ .fst = yᴰxᴰ≅Pᴰ .fst
Representableᴰ→UniversalElementᴰOverUE ue yᴰxᴰ≅Pᴰ .snd .fst =
Pᴰ.reind (P.⋆IdL (UniversalElement.element ue))
(yᴰxᴰ≅Pᴰ .snd .fst .N-ob
(UniversalElement.vertex ue , yᴰxᴰ≅Pᴰ .fst , C.id) Cᴰ.idᴰ)
Representableᴰ→UniversalElementᴰOverUE ue yᴰxᴰ≅Pᴰ .snd .snd Γ Γᴰ .inv =
yᴰxᴰ≅Pᴰ .snd .snd Γ Γᴰ .inv
Representableᴰ→UniversalElementᴰOverUE ue yᴰxᴰ≅Pᴰ .snd .snd Γ Γᴰ .rightInv =
λ p pᴰ → Pᴰ.rectify $ Pᴰ.≡out $
Pᴰ.⟨⟩⋆⟨ sym $ Pᴰ.reind-filler _ ⟩
∙ sym (∫PshHomᴰ {α = yoRec P (UniversalElement.element ue)} (yᴰxᴰ≅Pᴰ .snd .fst) .N-hom _ _ _ _)
∙ cong (∫PshHomᴰ {α = yoRec P (UniversalElement.element ue)} (yᴰxᴰ≅Pᴰ .snd .fst) .N-ob _)
((sym $ Cᴰ.reind-filler _) ∙ Cᴰ.⋆IdR _)
∙ Pᴰ.≡in (yᴰxᴰ≅Pᴰ .snd .snd Γ Γᴰ .rightInv _ _)
Representableᴰ→UniversalElementᴰOverUE ue yᴰxᴰ≅Pᴰ .snd .snd Γ Γᴰ .leftInv =
λ f fᴰ → Cᴰ.rectify $ Cᴰ.≡out $
cong (invPshIso (∫PshIsoᴰ {α = yoRecIso {P = P} ue} (yᴰxᴰ≅Pᴰ .snd)) .trans .N-ob _)
(Pᴰ.⟨⟩⋆⟨ (sym $ Pᴰ.reind-filler _) ⟩
∙ sym (∫PshHomᴰ {α = yoRec P (UniversalElement.element ue)} (yᴰxᴰ≅Pᴰ .snd .fst) .N-hom _ _ _ _)
∙ cong (∫PshHomᴰ {α = yoRec P (UniversalElement.element ue)} (yᴰxᴰ≅Pᴰ .snd .fst) .N-ob _)
(sym (Cᴰ.reind-filler _) ∙ Cᴰ.⋆IdR _))
∙ (Cᴰ.≡in $ yᴰxᴰ≅Pᴰ .snd .snd Γ Γᴰ .leftInv _ _)
Representableⱽ→UniversalElementᴰ : (ue : UniversalElement C P)
→ Representableⱽ Cᴰ (ue .vertex) (reindPshᴰNatTrans (yoRec P (ue .element)) Pᴰ)
→ UniversalElementᴰ ue
Representableⱽ→UniversalElementᴰ ue reprⱽ =
Representableᴰ→UniversalElementᴰOverUE ue (reprⱽ .fst , FiberwisePshIsoᴰ→PshIsoᴰ (reprⱽ .snd))
module _ {C : Category ℓC ℓC'}{D : Category ℓD ℓD'}
{Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ'}{Dᴰ : Categoryᴰ D ℓDᴰ ℓDᴰ'}
{F : Functor C D} (Fᴰ : Functorᴰ F Cᴰ Dᴰ)
where
private
module Cᴰ = Fibers Cᴰ
module Dᴰ = Fibers Dᴰ
Functorᴰ→PshHetᴰ : ∀ {x} (xᴰ : Cᴰ.ob[ x ])
→ PshHomⱽ (Cᴰ [-][-, xᴰ ]) (reindPsh (Fᴰ /FᴰYo x) (Dᴰ [-][-, Fᴰ .F-obᴰ xᴰ ]))
Functorᴰ→PshHetᴰ xᴰ .N-ob (Γ , Γᴰ , f) fᴰ = Fᴰ .F-homᴰ fᴰ
Functorᴰ→PshHetᴰ xᴰ .N-hom (Δ , Δᴰ , f) (Γ , Γᴰ , f') (γ , γᴰ , γf≡f') f'ᴰ = Dᴰ.rectify $ Dᴰ.≡out $
cong (∫F Fᴰ .F-hom) (sym $ Cᴰ.reind-filler _)
∙ ∫F Fᴰ .F-seq _ _
∙ Dᴰ.reind-filler _
FFFunctorᴰ→PshIsoᴰ : ∀ {x} (xᴰ : Cᴰ.ob[ x ])
→ FullyFaithfulᴰ Fᴰ → PshIsoⱽ (Cᴰ [-][-, xᴰ ]) (reindPsh (Fᴰ /FᴰYo x) (Dᴰ [-][-, Fᴰ .F-obᴰ xᴰ ]))
FFFunctorᴰ→PshIsoᴰ xᴰ FFFᴰ = pshiso (Functorᴰ→PshHetᴰ xᴰ)
(λ (Γ , Γᴰ , f) → (FFFᴰ f Γᴰ xᴰ .fst) , FFFᴰ f Γᴰ xᴰ .snd)
reindexRepresentable-seq : ∀ {x y f}
→ NatIso ((Idᴰ /Fⱽ yoRec (D [-, F-ob F y ]) (F ⟪ f ⟫)) ∘F (Fᴰ /Fᴰ Functor→PshHet F x))
((Fᴰ /Fᴰ Functor→PshHet F y) ∘F (Idᴰ /Fⱽ yoRec (C [-, y ]) f))
reindexRepresentable-seq = /NatIso
(record { trans = natTrans (λ _ → D .id) (λ _ → idTrans Id .N-hom _) ; nIso = λ _ → idNatIso Id .nIso _ })
(record { transᴰ = record { N-obᴰ = λ _ → Dᴰ.idᴰ ; N-homᴰ = λ _ → Dᴰ.rectify $ Dᴰ.≡out $ Dᴰ.⋆IdR _ ∙ sym (Dᴰ.⋆IdL _) } ; nIsoᴰ = λ _ → idᴰCatIsoᴰ Dᴰ .snd })
λ _ → D .⋆IdL _ ∙ F .F-seq _ _
module _ {C : Category ℓC ℓC'}{Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ'}
{x}
{Pⱽ : Presheafⱽ x Cᴰ ℓPᴰ}{Qⱽ : Presheafⱽ x Cᴰ ℓQᴰ}
where
_◁PshIsoⱽ_ : Representableⱽ Cᴰ x Pⱽ → PshIsoⱽ Pⱽ Qⱽ → Representableⱽ Cᴰ x Qⱽ
(xᴰ , α) ◁PshIsoⱽ β = (xᴰ , (α ⋆PshIso β))
module _ {C : Category ℓC ℓC'} (Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ') (x : C .ob) where
private
module Cᴰ = Fibers Cᴰ
_⟨_⟩[-][-,_] : Cᴰ.ob[ x ] → Presheafⱽ x Cᴰ ℓCᴰ'
_⟨_⟩[-][-,_] xᴰ = Cᴰ [-][-, xᴰ ]