module Cubical.Categories.Displayed.Quantifiers.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.More
open import Cubical.Foundations.Function
open import Cubical.Foundations.Structure
open import Cubical.Functions.FunExtEquiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Sigma
import Cubical.Data.Equality as Eq
open import Cubical.Categories.Category
open import Cubical.Categories.Functor
open import Cubical.Categories.Profunctor.General
open import Cubical.Categories.Yoneda
open import Cubical.Categories.Constructions.Fiber
open import Cubical.Categories.Limits.BinProduct.More
open import Cubical.Categories.Presheaf.Base
open import Cubical.Categories.Presheaf.Morphism.Alt
open import Cubical.Categories.Presheaf.Representable
open import Cubical.Categories.Presheaf.Representable.More
open import Cubical.Categories.Presheaf.More
open import Cubical.Categories.Presheaf.Constructions
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.NaturalTransformation as NT
open import Cubical.Categories.FunctorComprehension
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Instances.Sets.Base
open import Cubical.Categories.Displayed.Instances.Functor.Base
open import Cubical.Categories.Displayed.Functor
open import Cubical.Categories.Displayed.Profunctor
open import Cubical.Categories.Displayed.NaturalTransformation
open import Cubical.Categories.Displayed.Functor.More
open import Cubical.Categories.Displayed.Adjoint.More
open import Cubical.Categories.Displayed.Constructions.Reindex.Base
open import Cubical.Categories.Displayed.Fibration.Base
open import Cubical.Categories.Displayed.Presheaf
open import Cubical.Categories.Displayed.Presheaf.Constructions.Quantifiers.Base
open import Cubical.Categories.Displayed.FunctorComprehension
import Cubical.Categories.Displayed.Presheaf.CartesianLift as PshᴰCL
private
variable
ℓC ℓC' ℓCᴰ ℓCᴰ' ℓ ℓ' ℓP ℓPᴰ ℓD ℓD' ℓDᴰ ℓDᴰ' : Level
open NatTrans
open Functor
open Functorᴰ
open PshHomᴰ
module _
{C : Category ℓC ℓC'}
{Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ'}
where
open UniversalElement
private
module C = Category C
module Cᴰ = Fibers Cᴰ
module UniversalQuantifierF
(F : Functor C C)
(πF : NatTrans F Id)
(πF* : {Γ : C.ob} → (Γᴰ : Cᴰ.ob[ Γ ]) →
CartesianLift Cᴰ Γᴰ (πF ⟦ Γ ⟧))
where
open UniversalQuantifierFPsh F πF πF*
module _ {Γ : C.ob} (Γᴰ : Cᴰ.ob[ F ⟅ Γ ⟆ ]) where
UniversalQuantifierF : Type _
UniversalQuantifierF =
UniversalElementⱽ Cᴰ Γ (∀FⱽPsh (Cᴰ [-][-, Γᴰ ]))
module UniversalQuantifierFNotation {Γ}{Γᴰ : Cᴰ.ob[ F ⟅ Γ ⟆ ]}
(∀Γᴰ : UniversalQuantifierF Γᴰ) where
module ∀ueFⱽ = UniversalElementⱽ ∀Γᴰ
open UniversalElementⱽ
vert : Cᴰ.ob[ Γ ]
vert = ∀ueFⱽ.vertexⱽ
app : Cᴰ [ _ ][ πF* vert .vertexⱽ , Γᴰ ]
app = ∀ueFⱽ.elementⱽ
lda : ∀ {Δ} {Δᴰ : Cᴰ.ob[ Δ ]} {γ} →
Cᴰ [ Functor→PshHet F Γ .PshHom.N-ob Δ γ ][ vertexⱽ (πF* Δᴰ) , Γᴰ ] →
Cᴰ [ γ ][ Δᴰ , vert ]
lda = ∀ueFⱽ.universalⱽ .fst
module _
{C : Category ℓC ℓC'}
{Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ'}
{a : C .Category.ob}
(bp : BinProductsWith C a)
where
private
module bp = BinProductsWithNotation bp
module C = Category C
module Cᴰ = Fibers Cᴰ
module _ (π₁* : ∀ {Γ} → (Γᴰ : Cᴰ.ob[ Γ ]) → CartesianLift Cᴰ Γᴰ bp.π₁)
{Γ} (Γᴰ : Cᴰ.ob[ Γ bp.×a ]) where
open UniversalQuantifierF bp.×aF bp.π₁Nat π₁*
UniversalQuantifier : Type _
UniversalQuantifier = UniversalQuantifierF Γᴰ
module _
{C : Category ℓC ℓC'}
{Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ'}
(bp : BinProducts C)
(isFib : isFibration Cᴰ)
where
private
module Cᴰ = Categoryᴰ Cᴰ
UniversalQuantifiers : Type _
UniversalQuantifiers =
∀ a Γ pᴰ →
UniversalQuantifier {a = a}
(BinProducts→BinProductsWith C a bp)
(λ Γᴰ → isFib Γᴰ _) {Γ = Γ} pᴰ