module Cubical.Categories.WithFamilies.Simple.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Function
open import Cubical.Data.Sigma
open import Cubical.Categories.Category
open import Cubical.Categories.Bifunctor
open import Cubical.Categories.Functor
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Constructions.Fiber
open import Cubical.Categories.Limits.Terminal.More
open import Cubical.Categories.Presheaf
open import Cubical.Categories.Presheaf.More
open import Cubical.Categories.Presheaf.Constructions
open import Cubical.Categories.Displayed.Presheaf
open import Cubical.Categories.WithFamilies.Simple.Base
open import Cubical.Categories.WithFamilies.Simple.Displayed
open Category
private
variable
ℓC ℓC' ℓT ℓT' ℓCᴰ ℓCᴰ' ℓTᴰ ℓTᴰ' : Level
module SCwFNotation (the-scwf : SCwF ℓC ℓC' ℓT ℓT') where
C = the-scwf .fst
Ty = the-scwf .snd .fst
Tm = the-scwf .snd .snd .fst
module Tm⟨_⟩ (A : Ty) = PresheafNotation (Tm A)
term = the-scwf .snd .snd .fst
ext = the-scwf .snd .snd .snd
module SCwFᴰNotation
{the-scwf : SCwF ℓC ℓC' ℓT ℓT'}
(the-scwfᴰ : SCwFᴰ the-scwf ℓCᴰ ℓCᴰ' ℓTᴰ ℓTᴰ')
where
open SCwFNotation the-scwf public
Cᴰ = the-scwfᴰ .fst
module Cᴰ = Fibers Cᴰ
Tyᴰ = the-scwfᴰ .snd .fst
Tmᴰ = the-scwfᴰ .snd .snd .fst
module Tmᴰ {A : Ty}{Aᴰ : Tyᴰ A} = PresheafᴰNotation (Tmᴰ Aᴰ)
termᴰ = the-scwfᴰ .snd .snd .snd .fst
module termᴰ = UniversalElementᴰ termᴰ
extᴰ = the-scwfᴰ .snd .snd .snd .snd
module extᴰ {Γ}{A}{Γᴰ : Cᴰ.ob[ Γ ]}{Aᴰ : Tyᴰ A} =
UniversalElementᴰ (extᴰ Aᴰ Γᴰ)