{-# OPTIONS --lossy-unification #-}
module Cubical.Categories.Displayed.Presheaf.CartesianLift.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.More
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
import Cubical.Data.Equality as Eq
open import Cubical.Data.Sigma
open import Cubical.Categories.Category hiding (isIso)
open import Cubical.Categories.Constructions.Fiber
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Presheaf.Base
open import Cubical.Categories.Presheaf.Constructions
open import Cubical.Categories.Presheaf.More
open import Cubical.Categories.Presheaf.Morphism.Alt
open import Cubical.Categories.Functor
open import Cubical.Categories.NaturalTransformation
open import Cubical.Categories.Bifunctor
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Instances.Sets.Base
open import Cubical.Categories.Displayed.Functor
open import Cubical.Categories.Displayed.NaturalTransformation
open import Cubical.Categories.Displayed.Presheaf
open import Cubical.Categories.Displayed.Presheaf.Constructions.Reindex
import Cubical.Categories.Displayed.Constructions.Reindex.Base as Reindex
private
variable
ℓB ℓB' ℓC ℓC' ℓCᴰ ℓCᴰ' ℓD ℓD' ℓDᴰ ℓDᴰ' ℓP ℓQ ℓPᴰ ℓQᴰ : Level
open PshHom
open PshIso
open Category
open Functor
open Functorᴰ
module _ {C : Category ℓC ℓC'} {Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ'}
{P : Presheaf C ℓP}
where
private
module Cᴰ = Fibers Cᴰ
module P = PresheafNotation P
CartesianLift : ∀ {x} (p : P.p[ x ]) (Pᴰ : Presheafᴰ P Cᴰ ℓPᴰ) → Type _
CartesianLift p Pᴰ = UniversalElementⱽ Cᴰ _ (reindYo p Pᴰ)
module _ (Pᴰ : Presheafᴰ P Cᴰ ℓPᴰ) where
isFibration : Type _
isFibration = ∀ {x} (p : P.p[ x ]) → CartesianLift p Pᴰ
module _ {C : Category ℓC ℓC'} {Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ'}
{P : Presheaf C ℓP} {Q : Presheaf C ℓQ}
(Qᴰ : Presheafᴰ Q Cᴰ ℓQᴰ) (α : PshHom P Q)
(isFibQᴰ : isFibration Qᴰ)
where
isFibrationReind : isFibration (reind {P = P} α Qᴰ)
isFibrationReind p = isFibQᴰ (α .N-ob _ p) ◁PshIsoⱽ invPshIsoⱽ (reindYo-seqIsoⱽ α Qᴰ p)