{-# OPTIONS --lossy-unification #-}
module Cubical.Categories.Displayed.Presheaf.Constructions.BinProduct.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.More
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Data.Unit
import Cubical.Data.Equality as Eq
open import Cubical.Categories.Category.Base
open import Cubical.Categories.Constructions.Fiber
open import Cubical.Categories.Presheaf.Base
open import Cubical.Categories.Presheaf.Constructions
open import Cubical.Categories.Presheaf.Morphism.Alt
open import Cubical.Categories.Presheaf.More
open import Cubical.Categories.Presheaf.Representable
open import Cubical.Categories.Presheaf.Representable.More
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Functor
open import Cubical.Categories.Displayed.Functor.More
open import Cubical.Categories.Displayed.Bifunctor
open import Cubical.Categories.Displayed.Profunctor
open import Cubical.Categories.Displayed.Instances.Functor.Base
open import Cubical.Categories.Displayed.Instances.Sets.Base
open import Cubical.Categories.Displayed.Presheaf.Base
open import Cubical.Categories.Displayed.Presheaf.Properties
open import Cubical.Categories.Displayed.Presheaf.Representable
open import Cubical.Categories.Displayed.Presheaf.Constructions.Reindex.Base
open import Cubical.Categories.Displayed.BinProduct
open import Cubical.Categories.Displayed.Constructions.BinProduct.More
private
variable
ℓ ℓ' ℓᴰ ℓᴰ' : Level
ℓA ℓB ℓAᴰ ℓBᴰ : Level
ℓC ℓC' ℓCᴰ ℓCᴰ' : Level
ℓD ℓD' ℓDᴰ ℓDᴰ' : Level
ℓP ℓQ ℓR ℓPᴰ ℓPᴰ' ℓQᴰ ℓQᴰ' ℓRᴰ : Level
open Bifunctorᴰ
open Functorᴰ
open PshHom
open PshIso
module _ {C : Category ℓC ℓC'} {Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ'} where
private
module C = Category C
module Cᴰ = Fibers Cᴰ
PshProd'ᴰ :
Functorᴰ PshProd' (PRESHEAFᴰ Cᴰ ℓA ℓAᴰ ×Cᴰ PRESHEAFᴰ Cᴰ ℓB ℓBᴰ)
(PRESHEAFᴰ Cᴰ (ℓ-max ℓA ℓB) (ℓ-max ℓAᴰ ℓBᴰ))
PshProd'ᴰ = postcomposeFᴰ (C ^op) (Cᴰ ^opᴰ) ×Setsᴰ ∘Fᴰ ,Fᴰ-functorᴰ
PshProdᴰ :
Bifunctorᴰ PshProd (PRESHEAFᴰ Cᴰ ℓA ℓAᴰ) (PRESHEAFᴰ Cᴰ ℓB ℓBᴰ)
(PRESHEAFᴰ Cᴰ (ℓ-max ℓA ℓB) (ℓ-max ℓAᴰ ℓBᴰ))
PshProdᴰ = ParFunctorᴰToBifunctorᴰ PshProd'ᴰ
_×ᴰPsh_ : ∀ {P : Presheaf C ℓA}{Q : Presheaf C ℓB}
→ (Pᴰ : Presheafᴰ P Cᴰ ℓAᴰ)(Qᴰ : Presheafᴰ Q Cᴰ ℓBᴰ)
→ Presheafᴰ (P ×Psh Q) Cᴰ _
_×ᴰPsh_ = PshProdᴰ .Bif-obᴰ
∫×ᴰ≅× : ∀ {P : Presheaf C ℓA}{Q : Presheaf C ℓB}
→ {Pᴰ : Presheafᴰ P Cᴰ ℓAᴰ}{Qᴰ : Presheafᴰ Q Cᴰ ℓBᴰ}
→ PshIso (∫P (Pᴰ ×ᴰPsh Qᴰ)) (∫P Pᴰ ×Psh ∫P Qᴰ)
∫×ᴰ≅× .trans .N-ob _ ((p , q) , (pᴰ , qᴰ)) = (p , pᴰ) , (q , qᴰ)
∫×ᴰ≅× .trans .N-hom _ _ _ _ = refl
∫×ᴰ≅× .nIso _ .fst ((p , pᴰ) , (q , qᴰ)) = (p , q) , (pᴰ , qᴰ)
∫×ᴰ≅× .nIso _ .snd .fst _ = refl
∫×ᴰ≅× .nIso _ .snd .snd _ = refl
PshProdⱽ :
Functorⱽ (PRESHEAFᴰ Cᴰ ℓA ℓAᴰ ×ᴰ PRESHEAFᴰ Cᴰ ℓA ℓBᴰ)
(PRESHEAFᴰ Cᴰ ℓA (ℓ-max ℓAᴰ ℓBᴰ))
PshProdⱽ = postcomposeFⱽ (C ^op) (Cᴰ ^opᴰ) ×Setsⱽ ∘Fⱽ ,Fⱽ-functorⱽ
_×ⱽPsh_ : ∀ {P : Presheaf C ℓA}
→ (Pᴰ : Presheafᴰ P Cᴰ ℓAᴰ)(Qᴰ : Presheafᴰ P Cᴰ ℓBᴰ)
→ Presheafᴰ P Cᴰ _
Pᴰ ×ⱽPsh Qᴰ = PshProdⱽ .F-obᴰ (Pᴰ , Qᴰ)