{-# OPTIONS --lossy-unification #-}
module Cubical.Categories.Displayed.Constructions.Reindex.Cartesian where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.More
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.Dependent
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.HLevels.More
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Transport
import Cubical.Data.Equality as Eq
open import Cubical.Data.Sigma
open import Cubical.Data.Unit
open import Cubical.Categories.Category.Base
open import Cubical.Categories.More
open import Cubical.Categories.Functor
open import Cubical.Categories.NaturalTransformation
open import Cubical.Categories.NaturalTransformation.More
open import Cubical.Categories.Constructions.Fiber
open import Cubical.Categories.Constructions.TotalCategory
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Limits.Terminal.More
open import Cubical.Categories.Limits.BinProduct.More
open import Cubical.Categories.Limits.Cartesian.Base
open import Cubical.Categories.Presheaf
open import Cubical.Categories.Presheaf.Morphism.Alt
open import Cubical.Categories.Presheaf.Constructions.BinProduct
open import Cubical.Categories.Presheaf.Constructions.Reindex
open import Cubical.Categories.Presheaf.Constructions.Unit
open import Cubical.Categories.Presheaf.Representable.More
open import Cubical.Categories.FunctorComprehension.Base
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Functor
open import Cubical.Categories.Displayed.Functor.More
open import Cubical.Categories.Displayed.BinProduct
open import Cubical.Categories.Displayed.Constructions.BinProduct.More
open import Cubical.Categories.Displayed.Constructions.Reindex.Base
open import Cubical.Categories.Displayed.Constructions.Reindex.Fibration
open import Cubical.Categories.Displayed.Constructions.Reindex.Properties
open import Cubical.Categories.Displayed.Constructions.Reindex.UniversalProperties
open import Cubical.Categories.Displayed.HLevels
open import Cubical.Categories.Displayed.Limits.CartesianV'
open import Cubical.Categories.Displayed.Presheaf.Uncurried.Base
open import Cubical.Categories.Displayed.Presheaf.Uncurried.Constructions
open import Cubical.Categories.Displayed.Presheaf.Uncurried.Constructions.Exponential
open import Cubical.Categories.Displayed.Presheaf.Uncurried.Representable
open import Cubical.Categories.Displayed.Presheaf.Uncurried.UniversalProperties
private
variable
ℓB ℓB' ℓBᴰ ℓBᴰ' ℓC ℓC' ℓCᴰ ℓCᴰ' ℓD ℓD' ℓDᴰ ℓDᴰ' ℓE ℓE' ℓEᴰ ℓEᴰ' ℓP ℓPᴰ ℓQ ℓQᴰ : Level
open Category
open Functor
open Functorᴰ
open NatTrans
open NatIso
open PshHom
open PshIso
module _ {C : Category ℓC ℓC'} {D : Category ℓD ℓD'}
{Dᴰ : Categoryᴰ D ℓDᴰ ℓDᴰ'}
(F : Functor C D) where
private
module D = Category D
module Dᴰ = Fibers Dᴰ using (ob[_]; reind; reind-filler; rectify; ≡out; cong-reind; ⋆IdL)
reindexTerminalⱽ : ∀ x → Terminalⱽ Dᴰ (F ⟅ x ⟆) → Terminalⱽ (reindex Dᴰ F) x
reindexTerminalⱽ x 𝟙ⱽ = (𝟙ⱽ .fst) ,
(reindexRepresentableIsoⱽ Dᴰ F _ _
⋆PshIsoⱽ reindPshIso (reindex-π-/ Dᴰ F x) (𝟙ⱽ .snd)
⋆PshIsoⱽ reindPsh-Unit (reindex-π-/ Dᴰ F x))
TerminalsⱽReindex : Terminalsⱽ Dᴰ → Terminalsⱽ (reindex Dᴰ F)
TerminalsⱽReindex 𝟙ⱽs x = reindexTerminalⱽ x (𝟙ⱽs (F ⟅ x ⟆))
reindexBinProductⱽ : ∀ {x} (Fxᴰ Fyᴰ : Dᴰ.ob[ F ⟅ x ⟆ ])
→ BinProductⱽ Dᴰ Fxᴰ Fyᴰ
→ BinProductⱽ (reindex Dᴰ F) Fxᴰ Fyᴰ
reindexBinProductⱽ {x} Fxᴰ Fyᴰ Fxᴰ∧Fyᴰ = Fxᴰ∧Fyᴰ .fst ,
(reindexRepresentableIsoⱽ Dᴰ F x (Fxᴰ∧Fyᴰ .fst)
⋆PshIsoⱽ reindPshIso (reindex-π-/ Dᴰ F x) (Fxᴰ∧Fyᴰ .snd)
⋆PshIsoⱽ reindPsh× (reindex-π-/ Dᴰ F x) (Dᴰ [-][-, Fxᴰ ]) (Dᴰ [-][-, Fyᴰ ])
⋆PshIsoⱽ ×PshIso (invPshIso (reindexRepresentableIsoⱽ Dᴰ F x Fxᴰ)) (invPshIso (reindexRepresentableIsoⱽ Dᴰ F x Fyᴰ)))
BinProductsⱽReindex : BinProductsⱽ Dᴰ → BinProductsⱽ (reindex Dᴰ F)
BinProductsⱽReindex bpⱽs Fxᴰ Fyᴰ = reindexBinProductⱽ Fxᴰ Fyᴰ (bpⱽs Fxᴰ Fyᴰ)
module _ {x} (Fxᴰ : Dᴰ.ob[ F ⟅ x ⟆ ])(Qᴰ : Presheafⱽ (F ⟅ x ⟆) Dᴰ ℓQᴰ) where
private
module Qᴰ = PresheafᴰNotation Dᴰ (D [-, F ⟅ x ⟆ ]) Qᴰ
isLRⱽReindex : ∀ {x} (Pᴰ : Presheafⱽ (F ⟅ x ⟆) Dᴰ ℓPᴰ)
→ LocallyRepresentableⱽ Pᴰ
→ LocallyRepresentableⱽ (reindPsh (reindex-π-/ Dᴰ F x) Pᴰ)
isLRⱽReindex Pᴰ _×ⱽ_*Pᴰ Γᴰ f .fst = (Γᴰ ×ⱽ (F ⟪ f ⟫) *Pᴰ) .fst
isLRⱽReindex {x = x} Pᴰ _×ⱽ_*Pᴰ {Γ} Γᴰ f .snd =
(reindexRepresentableIsoⱽ Dᴰ F Γ ((Γᴰ ×ⱽ (F ⟪ f ⟫) *Pᴰ) .fst)
⋆PshIsoⱽ reindPshIso (reindex-π-/ Dᴰ F Γ) ((Γᴰ ×ⱽ F-hom F f *Pᴰ) .snd)
⋆PshIsoⱽ reindPsh× (reindex-π-/ Dᴰ F Γ) (Dᴰ [-][-, Γᴰ ]) (reindPshᴰNatTrans (yoRec (D [-, F-ob F x ]) (F-hom F f)) Pᴰ)
⋆PshIsoⱽ
×PshIso (invPshIsoⱽ (reindexRepresentableIsoⱽ Dᴰ F Γ Γᴰ))
(reindPsh-square (reindex-π-/ Dᴰ F Γ) (Idᴰ /Fⱽ yoRec (D [-, F-ob F x ]) (F-hom F f)) (Idᴰ /Fⱽ yoRec (C [-, x ]) f) (reindex-π-/ Dᴰ F x) Pᴰ
(reindexRepresentable-seq (π Dᴰ F))))
LRⱽReindex : ∀ {x} → (Pᴰ : LRⱽPresheafᴰ (D [-, F ⟅ x ⟆ ]) Dᴰ ℓPᴰ)
→ LRⱽPresheafᴰ (C [-, x ]) (reindex Dᴰ F) ℓPᴰ
LRⱽReindex (Pᴰ , _×ⱽ_*Pᴰ) = (reindPsh (reindex-π-/ Dᴰ F _) Pᴰ) , (isLRⱽReindex Pᴰ _×ⱽ_*Pᴰ)
isLRⱽObᴰReindex : ∀ {x} (xᴰ : Dᴰ.ob[ F ⟅ x ⟆ ])
→ isLRⱽObᴰ Dᴰ xᴰ
→ isLRⱽObᴰ (reindex Dᴰ F) xᴰ
isLRⱽObᴰReindex {x} xᴰ _×ⱽ_*xᴰ {Γ} Γᴰ f =
(Γᴰ ×ⱽ (F ⟪ f ⟫) *xᴰ) .fst
,
improvePshIso
(isLRⱽReindex (Dᴰ [-][-, xᴰ ]) _×ⱽ_*xᴰ Γᴰ f .snd
⋆PshIsoⱽ ×PshIso idPshIso
(reindPshIso (Idᴰ /Fⱽ yoRec (C [-, x ]) f) $
invPshIso $
reindexRepresentableIsoⱽ Dᴰ F x xᴰ))
((λ (Δ , Δᴰ , γ) γᴰ → (γᴰ ×ⱽ*xᴰ.⋆π₁ⱽ)
, Dᴰ.reind (sym $ F .F-seq γ f) (γᴰ ×ⱽ*xᴰ.⋆π₂ⱽ)) ,
funExt λ (Δ , Δᴰ , γ) → funExt λ fᴰ → ΣPathP (refl , (Dᴰ.rectify $ Dᴰ.≡out
$ Dᴰ.cong-reind _ _
(Dᴰ.⋆IdL _))))
((λ (Δ , Δᴰ , γ) (γᴰ , γfᴰ) →
×ⱽ*xᴰ.introᴰ γᴰ (Dᴰ.reind (F .F-seq γ f) γfᴰ)) , funExt λ (Δ , Δᴰ , γ) → funExt λ (γᴰ , γfᴰ) →
Dᴰ.rectify $ Dᴰ.≡out $ ×ⱽ*xᴰ.cong-introᴰ refl (Dᴰ.cong-reind _ _ (Dᴰ.⋆IdL _)))
where
module ×ⱽ*xᴰ = LRⱽPresheafᴰNotation Dᴰ (_ , _×ⱽ_*xᴰ)
LRⱽObᴰReindex : ∀ {x} → LRⱽObᴰ Dᴰ (F ⟅ x ⟆) → LRⱽObᴰ (reindex Dᴰ F) x
LRⱽObᴰReindex {x} (Fxᴰ , _×ⱽ_*Fxᴰ) = Fxᴰ , isLRⱽObᴰReindex Fxᴰ _×ⱽ_*Fxᴰ
AllLRⱽReindex : AllLRⱽ Dᴰ → AllLRⱽ (reindex Dᴰ F)
AllLRⱽReindex allLRⱽ {x} xᴰ = LRⱽObᴰReindex (xᴰ , allLRⱽ xᴰ) .snd
module _ {x} (Pᴰ : LRⱽPresheafᴰ (D [-, F ⟅ x ⟆ ]) Dᴰ ℓPᴰ) where
private
module ×ⱽ*Pᴰ = LRⱽPresheafᴰNotation Dᴰ Pᴰ using (⟨_⟩⋆π₁ⱽ; ⟨_⟩⋆π₂ⱽ)
module Pᴰ = PresheafᴰNotation Dᴰ (D [-, F ⟅ _ ⟆ ]) (Pᴰ .fst) using (≡out; rectify; reind-filler; formal-reind-filler)
opaque
unfolding hSetReasoning.reind
reindex-×LRⱽPshᴰ-commute
: NatIso ((×LRⱽPshᴰ Pᴰ) ∘F reindex-π-/ Dᴰ F x)
(reindex-π-/ Dᴰ F x ∘F ×LRⱽPshᴰ (LRⱽReindex Pᴰ))
reindex-×LRⱽPshᴰ-commute =
strictPresLRⱽ→NatIso {Cᴰ = reindex Dᴰ F}{Dᴰ = Dᴰ}{P = C [-, x ]}{Q = D [-, F-ob F x ]}
(reindex-π-/ {C = C}{D = D} Dᴰ F x) (LRⱽReindex Pᴰ) Pᴰ idPshHom
(λ _ → Eq.refl)
(λ (Γ , Γᴰ , f ) →
ΣPathP ((Hom/≡ ×ⱽ*Pᴰ.⟨ sym $ Dᴰ.reind-filler _ ⟩⋆π₁ⱽ)
, (Pᴰ.rectify $ Pᴰ.≡out $
sym (Pᴰ.reind-filler _)
∙ Pᴰ.formal-reind-filler (reindexRepresentable-seq (π Dᴰ F) .nIso (Γ , Pᴰ .snd Γᴰ (F-hom F f) .fst , id C) .isIso.inv .snd .snd) _
∙ ×ⱽ*Pᴰ.⟨ sym $ Dᴰ.reind-filler _ ⟩⋆π₂ⱽ
∙ Pᴰ.reind-filler _)))
module _
{C : Category ℓC ℓC'} {D : Category ℓD ℓD'}
(Dᴰ : CartesianCategoryⱽ D ℓDᴰ ℓDᴰ') (F : Functor C D)
where
private
module Dᴰ = CartesianCategoryⱽ Dᴰ using (Cᴰ; termⱽ; bpⱽ; cartesianLifts)
CartesianCategoryⱽReindex : CartesianCategoryⱽ C ℓDᴰ ℓDᴰ'
CartesianCategoryⱽReindex =
cartesiancategoryⱽ
(reindex Dᴰ.Cᴰ F)
(TerminalsⱽReindex F Dᴰ.termⱽ)
(BinProductsⱽReindex F Dᴰ.bpⱽ)
(isFibrationReindex Dᴰ.Cᴰ F Dᴰ.cartesianLifts)