{-# OPTIONS --lossy-unification #-}
module Cubical.Categories.Displayed.Instances.Sets.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Functions.FunExtEquiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.Dependent
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Transport
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.More
open import Cubical.Data.Sigma
open import Cubical.Data.Sigma.Properties
open import Cubical.Data.Unit
open import Cubical.Categories.Category
open import Cubical.Categories.Functor
open import Cubical.Categories.NaturalTransformation
open import Cubical.Categories.Adjoint.UniversalElements
open import Cubical.Categories.Limits.BinProduct.More
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Instances.Sets.More
open import Cubical.Categories.Instances.Sets.Properties
open import Cubical.Categories.Presheaf.Base
open import Cubical.Categories.Presheaf.Constructions
open import Cubical.Categories.Presheaf.More
open import Cubical.Categories.Presheaf.Morphism.Alt
open import Cubical.Categories.Presheaf.Representable
open import Cubical.Categories.Presheaf.Representable.More
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Exponentials
open import Cubical.Categories.Constructions.Fiber hiding (fiber)
open import Cubical.Categories.Displayed.Functor
open import Cubical.Categories.Displayed.Fibration.Base
open import Cubical.Categories.Displayed.Instances.Sets.Base
open import Cubical.Categories.Displayed.Presheaf
open import Cubical.Categories.Displayed.Presheaf.CartesianLift
using () renaming (CartesianLift to PshᴰCartesianLift)
open import Cubical.Categories.Displayed.Limits.CartesianV
open import Cubical.Categories.Displayed.Limits.BinProduct
open import Cubical.Categories.Displayed.Limits.BinProduct.Fiberwise
open import Cubical.Categories.Displayed.Limits.Terminal
open import Cubical.Categories.Displayed.Exponentials.Base
open import Cubical.Categories.Displayed.Quantifiers
private
variable
ℓ ℓ' ℓ'' ℓ''' : Level
ℓC ℓC' ℓD ℓD' : Level
open UniversalElementᴰ
open UniversalElementⱽ
open Categoryᴰ
open Category
open isIsoOver
isFibrationSETᴰ : isFibration (SETᴰ ℓ ℓ')
isFibrationSETᴰ Q f .vertexⱽ a = Q (f a)
isFibrationSETᴰ Q f .elementⱽ _ q = q
isFibrationSETᴰ Q f .universalⱽ .fst = λ z → z
isFibrationSETᴰ Q f .universalⱽ .snd .fst b =
transportRefl _ ∙ transportRefl _
isFibrationSETᴰ Q f .universalⱽ .snd .snd a =
transportRefl _ ∙ transportRefl _
TerminalsⱽSETᴰ : Terminalsⱽ (SETᴰ ℓ ℓ')
TerminalsⱽSETᴰ A .vertexⱽ a = Unit* , isSetUnit*
TerminalsⱽSETᴰ A .elementⱽ = tt
TerminalsⱽSETᴰ A .universalⱽ .fst = λ _ x _ → tt*
TerminalsⱽSETᴰ A .universalⱽ .snd .fst b = refl
TerminalsⱽSETᴰ A .universalⱽ .snd .snd a = refl
BinProductsⱽSETᴰ : BinProductsⱽ (SETᴰ ℓ ℓ')
BinProductsⱽSETᴰ A (Aᴰ₁ , Aᴰ₂) .vertexⱽ a =
(⟨ Aᴰ₁ a ⟩ × ⟨ Aᴰ₂ a ⟩) , (isSet× (Aᴰ₁ a .snd) (Aᴰ₂ a .snd))
BinProductsⱽSETᴰ A (Aᴰ₁ , Aᴰ₂) .elementⱽ = (λ _ → fst) , (λ _ → snd)
BinProductsⱽSETᴰ A (Aᴰ₁ , Aᴰ₂) .universalⱽ .fst x x₁ x₂ =
x .fst x₁ x₂ , x .snd x₁ x₂
BinProductsⱽSETᴰ A (Aᴰ₁ , Aᴰ₂) .universalⱽ .snd .fst b =
sym $ transport-filler _ _
BinProductsⱽSETᴰ A (Aᴰ₁ , Aᴰ₂) .universalⱽ {y = B} {yᴰ = Bᴰ} {f} .snd .snd a =
funExt₂ λ b bᴰ →
ΣPathP
( fromPathP (λ i → a
(transport-filler (λ _ → ⟨ B ⟩) b (~ i))
(transport-filler (λ j₂ → fst (Bᴰ (transp (λ j₁ → fst B) (~ j₂) b)))
bᴰ (~ i)) .fst)
, fromPathP
(λ i → a
(transport-filler (λ _ → ⟨ B ⟩) b (~ i))
(transport-filler (λ j₂ → fst (Bᴰ (transp (λ j₁ → fst B) (~ j₂) b)))
bᴰ (~ i)) .snd))
SETᴰCartesianCategoryⱽ :
∀ ℓ ℓ' → CartesianCategoryⱽ (SET ℓ) (ℓ-max ℓ (ℓ-suc ℓ')) (ℓ-max ℓ ℓ')
SETᴰCartesianCategoryⱽ ℓ ℓ' .CartesianCategoryⱽ.Cᴰ =
SETᴰ ℓ ℓ'
SETᴰCartesianCategoryⱽ ℓ ℓ' .CartesianCategoryⱽ.termⱽ =
TerminalsⱽSETᴰ
SETᴰCartesianCategoryⱽ ℓ ℓ' .CartesianCategoryⱽ.bpⱽ =
BinProductsⱽSETᴰ
SETᴰCartesianCategoryⱽ ℓ ℓ' .CartesianCategoryⱽ.cartesianLifts =
isFibrationSETᴰ
module _ {ℓ} {ℓ'} where
private
module SETᴰ = Fibers (SETᴰ ℓ ℓ')
bp : (A : SET ℓ .ob) → BinProducts SETᴰ.v[ A ]
bp A = BinProductsⱽ→BinProductsFibers (SETᴰ ℓ ℓ') BinProductsⱽSETᴰ
bpw : {A : SET ℓ .ob} → (Aᴰ : SETᴰ.ob[ A ]) →
BinProductsWith SETᴰ.v[ A ] Aᴰ
bpw {A = A} Aᴰ Aᴰ' = bp A (Aᴰ' , Aᴰ)
open UniversalElement
FiberExponentialSETᴰ : (A : SET ℓ .ob) → (Aᴰ Aᴰ' : SETᴰ.ob[ A ]) →
Exponential SETᴰ.v[ A ] Aᴰ Aᴰ' (bpw Aᴰ)
FiberExponentialSETᴰ A Aᴰ Aᴰ' .vertex a .fst = ⟨ Aᴰ a ⟩ → ⟨ Aᴰ' a ⟩
FiberExponentialSETᴰ A Aᴰ Aᴰ' .vertex a .snd = isSet→ (str (Aᴰ' a))
FiberExponentialSETᴰ A Aᴰ Aᴰ' .element a (f , aᴰ) = f aᴰ
FiberExponentialSETᴰ A Aᴰ Aᴰ' .universal Aᴰ'' =
isIsoToIsEquiv (
(λ f a aᴰ'' aᴰ → f a (aᴰ'' , aᴰ)) ,
(λ f → fromPathP
(λ i → transport-filler
(λ j → (a : ⟨ A ⟩) → ⟨ Aᴰ'' a ⟩ × ⟨ Aᴰ a ⟩ → ⟨ Aᴰ' a ⟩)
f (~ i))),
(λ f → fromPathP
(λ i → transport-filler
(λ j → (a : ⟨ A ⟩) → ⟨ Aᴰ'' a ⟩ → ⟨ Aᴰ a ⟩ → ⟨ Aᴰ' a ⟩)
f (~ i))))
private
module _ (A : SET ℓ .ob)(Aᴰ Aᴰ' : SETᴰ.ob[ A ]) where
module FibExp = ExponentialNotation (bpw Aᴰ) (FiberExponentialSETᴰ A Aᴰ Aᴰ')
ExponentialsⱽSETᴰ :
Exponentialsⱽ (SETᴰ ℓ ℓ') BinProductsⱽSETᴰ isFibrationSETᴰ
ExponentialsⱽSETᴰ {c = A} P Q .vertexⱽ a .fst = ⟨ P a ⟩ → ⟨ Q a ⟩
ExponentialsⱽSETᴰ {c = A} P Q .vertexⱽ a .snd = isSet→ (Q a .snd)
ExponentialsⱽSETᴰ {c = A} P Q .elementⱽ a x = x .fst (x .snd)
ExponentialsⱽSETᴰ {c = A} P Q .universalⱽ .fst f γ γᴰ p = f γ (γᴰ , p)
ExponentialsⱽSETᴰ {ℓ}{ℓ'}{A} P Q .universalⱽ {Γ} {Γᴰ} {f} .snd .fst fᴰ =
funExt λ γ → funExt λ γᴰ →
Q.Prectify $ Q.≡out $ sym $
cong₂fᴰ
(Γᴰ.reind-filler (λ i → transp (λ j → ⟨ Γ ⟩) (i0 ∨ i0 ∨ ~ i) γ)
∙ Γᴰ.reind-filler λ i → transp (λ j → ⟨ Γ ⟩) (i0 ∨ i0 ∨ ~ i) (transp (λ j → ⟨ Γ ⟩) (i0 ∨ i0) γ))
(P.reind-filler (λ i → f (transp (λ j → fst Γ) (~ i) γ))
∙ P.reind-filler (λ i → f (transp (λ j → fst Γ) (~ i) (transp (λ j → fst Γ) i0 γ)))
∙ P.reind-filler (λ i → f (transp (λ j → fst Γ) (~ i) (transp (λ j → fst Γ) i0 (transp (λ j → fst Γ) i0 γ))))
∙ P.reind-filler (λ i → f (transp (λ j → fst Γ) (~ i) (transp (λ j → fst Γ) i0 (transp (λ j → fst Γ) i0 (transp (λ j → fst Γ) i0 γ)))))
∙ P.reind-filler (λ i → f (transp (λ j → fst Γ) i (transp (λ j → fst Γ) i0 (transp (λ j → fst Γ) i0 (transp (λ j → fst Γ) i0 γ)))))
∙ P.reind-filler (λ i → f (transp (λ j → fst Γ) i (transp (λ j → fst Γ) i0 (transp (λ j → fst Γ) i0 γ))))
∙ P.reind-filler (λ i → PresheafNotation.⋆IdL (SET ℓ [-, A ]) ((SET ℓ [-, A ]) .Functor.F-hom f (id (SET ℓ))) i (transp (λ j → ⟨ Γ ⟩) (i0 ∨ i) (transp (λ j → ⟨ Γ ⟩) (i0 ∨ i0) γ)))
∙ P.reind-filler λ i → ⋆IdL (SET ℓ) f (i0 ∨ ~ i) (transp (λ j → ⟨ Γ ⟩) (i0 ∨ i0 ∨ ~ i) (transp (λ j → ⟨ Γ ⟩) (i0 ∨ i0) γ)))
∙ Q.reind-filler (λ i → ⋆IdL (SET ℓ) f i (transp (λ j → ⟨ Γ ⟩) (i0 ∨ i) (transp (λ j → ⟨ Γ ⟩) (i0 ∨ i0) γ)))
∙ Q.reind-filler λ i → ⋆IdR (SET ℓ) f i (transp (λ j → ⟨ Γ ⟩) (i0 ∨ i) γ)
where
⟨P⟩ ⟨Q⟩ : ⟨ A ⟩ → Type _
⟨Q⟩ a = ⟨ Q a ⟩
⟨P⟩ a = ⟨ P a ⟩
⟨Γᴰ⟩ : ⟨ Γ ⟩ → Type _
⟨Γᴰ⟩ γ = ⟨ Γᴰ γ ⟩
module P = hSetReasoning A ⟨P⟩
module Q = hSetReasoning A ⟨Q⟩
module Γᴰ = hSetReasoning Γ ⟨Γᴰ⟩
cong₂fᴰ :
∀ {γ γ'}{γᴰ γᴰ'}{p p'}
(γᴰ≡γᴰ' : Path (Σ ⟨ Γ ⟩ ⟨Γᴰ⟩) (γ , γᴰ) (γ' , γᴰ'))
→ (p≡p' : Path (Σ ⟨ A ⟩ ⟨P⟩) (f γ , p) (f γ' , p'))
→ Path (Σ ⟨ A ⟩ ⟨Q⟩) (f γ , fᴰ γ (γᴰ , p)) (f γ' , fᴰ γ' (γᴰ' , p'))
cong₂fᴰ γᴰ≡γᴰ' p≡p' i = (f (γᴰ≡γᴰ' i .fst)) , (fᴰ (γᴰ≡γᴰ' i .fst) ((γᴰ≡γᴰ' i .snd)
, (P.Prectify {e = cong fst p≡p'}{e' = cong f $ cong fst γᴰ≡γᴰ'}(λ j → p≡p' j .snd) i)))
ExponentialsⱽSETᴰ {ℓ} {ℓ'} {c = A} P Q .universalⱽ {Γ} {Γᴰ} {f} .snd .snd fᴰ =
funExt λ γ → funExt λ γᴰ → funExt λ p →
Q.Prectify $ Q.≡out $ sym $
cong₃fᴰ
(Γᴰ.reind-filler (λ i → transp (λ j → fst Γ) (~ i) γ)
∙ Γᴰ.reind-filler λ i → transp (λ j → fst Γ) (~ i) (transp (λ j → fst Γ) i0 γ))
(P.reind-filler (λ i → f (transp (λ j → fst Γ) (~ i) γ))
∙ P.reind-filler (λ i → f (transp (λ j → fst Γ) (~ i) (transp (λ j → fst Γ) i0 γ)))
∙ P.reind-filler (λ i → f (transp (λ j → fst Γ) (~ i) (transp (λ j → fst Γ) i0 (transp (λ j → fst Γ) i0 γ))))
∙ P.reind-filler (λ i → f (transp (λ j → fst Γ) (~ i) (transp (λ j → fst Γ) i0 (transp (λ j → fst Γ) i0 (transp (λ j → fst Γ) i0 γ)))))
∙ P.reind-filler (λ i → f (transp (λ j → fst Γ) i (transp (λ j → fst Γ) i0 (transp (λ j → fst Γ) i0 (transp (λ j → fst Γ) i0 γ)))))
∙ P.reind-filler (λ i → f (transp (λ j → fst Γ) i (transp (λ j → fst Γ) i0 (transp (λ j → fst Γ) i0 γ))))
∙ P.reind-filler (λ i → f (transp (λ j → fst Γ) i (transp (λ j → fst Γ) i0 γ)))
∙ P.reind-filler λ i → f (transp (λ j → fst Γ) (~ i) (transp (λ j → fst Γ) i0 γ)))
∙ Q.reind-filler (λ i → f (transp (λ j → fst Γ) i (transp (λ j → fst Γ) i0 γ)))
∙ Q.reind-filler λ i → f (transp (λ j → fst Γ) i γ)
where
⟨P⟩ ⟨Q⟩ : ⟨ A ⟩ → Type _
⟨Q⟩ a = ⟨ Q a ⟩
⟨P⟩ a = ⟨ P a ⟩
⟨Γᴰ⟩ : ⟨ Γ ⟩ → Type _
⟨Γᴰ⟩ γ = ⟨ Γᴰ γ ⟩
module P = hSetReasoning A ⟨P⟩
module Q = hSetReasoning A ⟨Q⟩
module Γᴰ = hSetReasoning Γ ⟨Γᴰ⟩
cong₃fᴰ :
∀ {γ γ'}{γᴰ γᴰ'}{p p'}
(γᴰ≡γᴰ' : Path (Σ ⟨ Γ ⟩ ⟨Γᴰ⟩) (γ , γᴰ) (γ' , γᴰ'))
→ (p≡p' : Path (Σ ⟨ A ⟩ ⟨P⟩) (f γ , p) (f γ' , p'))
→ Path (Σ ⟨ A ⟩ ⟨Q⟩) (f γ , fᴰ γ γᴰ p) (f γ' , fᴰ γ' γᴰ' p')
cong₃fᴰ γᴰ≡γᴰ' p≡p' i .fst = (f (γᴰ≡γᴰ' i .fst))
cong₃fᴰ γᴰ≡γᴰ' p≡p' i .snd =
fᴰ _ ((γᴰ≡γᴰ' i .snd))
((P.Prectify {e = cong fst p≡p'}{e' = cong f $ cong fst γᴰ≡γᴰ'}(λ j → p≡p' j .snd) i))
module _ {ℓ} {ℓ'} where
private
module SET = Category (SET ℓ)
module SETᴰ = Fibers (SETᴰ ℓ (ℓ-max ℓ ℓ'))
bp = BinProductsSET {ℓSET = ℓ}
module bp = BinProductsNotation bp
module _ {A B : SET.ob} (C : SETᴰ.ob[ A bp.× B ]) where
private
-×B = BinProducts→BinProductsWith (SET ℓ) B bp
module -×B = BinProductsWithNotation -×B
UniversalQuantifierSETᴰ :
UniversalQuantifier -×B (λ D → isFibrationSETᴰ D fst) C
UniversalQuantifierSETᴰ .vertexⱽ a .fst =
∀ (b : ⟨ B ⟩) → ⟨ C (a , b) ⟩
UniversalQuantifierSETᴰ .vertexⱽ a .snd =
isSetΠ (λ _ → str (C _))
UniversalQuantifierSETᴰ .elementⱽ (a , b) c = c b
UniversalQuantifierSETᴰ .universalⱽ .fst fᴰ d dᴰ b =
fᴰ (d , b) dᴰ
UniversalQuantifierSETᴰ .universalⱽ {y = D} {yᴰ = Dᴰ} {f = f} .snd .fst fᴰ =
funExt₂ $ λ (d , b) dᴰ →
C.Prectify $ C.≡out $ sym $
cong₂fᴰ
(sym $
(λ i → transp (λ _ → ⟨ B ⟩) i
(transp (λ _ → ⟨ B ⟩) i0
(transp (λ _ → ⟨ B ⟩) i0 b)))
∙ (λ i → transp (λ _ → ⟨ B ⟩) i
(transp (λ _ → ⟨ B ⟩) i0 b))
∙ λ i → transp (λ _ → ⟨ B ⟩) i b)
(Dᴰ.reind-filler (λ i → transp (λ i₁ → D .fst) (~ i) d)
∙ Dᴰ.reind-filler (λ i → transp (λ i₁ → D .fst) (~ i) (transp (λ i₁ → D .fst) i0 d))
∙ Dᴰ.reind-filler (λ i → transp (λ i₁ → D .fst) (~ i) (transp (λ i₁ → D .fst) i0 (transp (λ i₁ → D .fst) i0 d)))
∙ Dᴰ.reind-filler (λ i → transp (λ i₁ → D .fst) (~ i) (transp (λ i₁ → D .fst) i0 (transp (λ i₁ → D .fst) i0 (transp (λ i₁ → D .fst) i0 d))))
∙ Dᴰ.reind-filler λ i → transp (λ i₁ → D .fst) i (transp (λ i₁ → D .fst) i0 (transp (λ i₁ → D .fst) i0 (transp (λ i₁ → D .fst) i0 d))))
∙ C.reind-filler _
∙ C.reind-filler _
∙ C.reind-filler _
where
⟨C⟩ : ⟨ A bp.× B ⟩ → Type _
⟨C⟩ ab = ⟨ C ab ⟩
⟨Dᴰ⟩ : ⟨ D ⟩ → Type _
⟨Dᴰ⟩ d = ⟨ Dᴰ d ⟩
module C = hSetReasoning (A bp.× B) ⟨C⟩
module Dᴰ = hSetReasoning D ⟨Dᴰ⟩
cong₂fᴰ : ∀ {b b'} {d d'} {dᴰ dᴰ'} →
(b≡b' : b ≡ b') →
(dᴰ≡dᴰ' : (d , dᴰ) ≡ (d' , dᴰ')) →
Path (Σ ⟨ A bp.× B ⟩ ⟨C⟩)
((f d , b) , fᴰ (d , b) dᴰ)
((f d' , b') , fᴰ (d' , b') dᴰ')
cong₂fᴰ b≡b' dᴰ≡dᴰ' i =
((f (dᴰ≡dᴰ' i .fst)) , (b≡b' i)) ,
(fᴰ (dᴰ≡dᴰ' i .fst , (b≡b' i)) (dᴰ≡dᴰ' i .snd))
UniversalQuantifierSETᴰ .universalⱽ {y = D} {yᴰ = Dᴰ} {f = f} .snd .snd fᴰ =
funExt₃ λ d dᴰ b →
C.Prectify $ C.≡out $ sym $
cong₃fᴰ
(sym $
(λ i → transp (λ _ → ⟨ B ⟩) i
(transp (λ _ → ⟨ B ⟩) i0
(transp (λ _ → ⟨ B ⟩) i0 b)))
∙ (λ i → transp (λ _ → ⟨ B ⟩) i
(transp (λ _ → ⟨ B ⟩) i0 b))
∙ λ i → transp (λ _ → ⟨ B ⟩) i b)
(Dᴰ.reind-filler (λ i → transp (λ i₁ → D .fst) (~ i) d)
∙ Dᴰ.reind-filler (λ i → transp (λ i₁ → D .fst) (~ i) (transp (λ i₁ → D .fst) i0 d))
∙ Dᴰ.reind-filler (λ i → transp (λ i₁ → D .fst) (~ i) (transp (λ i₁ → D .fst) i0 (transp (λ i₁ → D .fst) i0 d)))
∙ Dᴰ.reind-filler (λ i → transp (λ i₁ → D .fst) (~ i) (transp (λ i₁ → D .fst) i0 (transp (λ i₁ → D .fst) i0 (transp (λ i₁ → D .fst) i0 d))))
∙ Dᴰ.reind-filler λ i → transp (λ i₁ → D .fst) i (transp (λ i₁ → D .fst) i0 (transp (λ i₁ → D .fst) i0 (transp (λ i₁ → D .fst) i0 d))))
∙ C.reind-filler _
∙ C.reind-filler _
∙ C.reind-filler _
where
⟨C⟩ : ⟨ A bp.× B ⟩ → Type _
⟨C⟩ ab = ⟨ C ab ⟩
⟨Dᴰ⟩ : ⟨ D ⟩ → Type _
⟨Dᴰ⟩ d = ⟨ Dᴰ d ⟩
module C = hSetReasoning (A bp.× B) ⟨C⟩
module Dᴰ = hSetReasoning D ⟨Dᴰ⟩
cong₃fᴰ : ∀ {b b'} {d d'} {dᴰ dᴰ'} →
(b≡b' : b ≡ b') →
(dᴰ≡dᴰ' : (d , dᴰ) ≡ (d' , dᴰ')) →
Path (Σ ⟨ A bp.× B ⟩ ⟨C⟩)
((f d , b) , fᴰ d dᴰ b)
((f d' , b') , fᴰ d' dᴰ' b')
cong₃fᴰ b≡b' dᴰ≡dᴰ' i =
((f (dᴰ≡dᴰ' i .fst)) , (b≡b' i)) ,
(fᴰ (dᴰ≡dᴰ' i .fst) (dᴰ≡dᴰ' i .snd) (b≡b' i))