{-# OPTIONS --lossy-unification #-}
module Cubical.Categories.Displayed.Instances.Presheaf.Uncurried.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.More
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Function
open import Cubical.Functions.FunExtEquiv
import Cubical.Data.Equality as Eq
open import Cubical.Data.Sigma
open import Cubical.Data.Unit
open import Cubical.Categories.Category.Base
open import Cubical.Categories.More
open import Cubical.Categories.Bifunctor
open import Cubical.Categories.Functor.Base
open import Cubical.Categories.Functor.Compose
open import Cubical.Categories.Constructions.Fiber
open import Cubical.Categories.Instances.Presheaf
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Presheaf.Base
open import Cubical.Categories.Presheaf.Constructions
open import Cubical.Categories.Presheaf.Constructions.Tensor
open import Cubical.Categories.Presheaf.Morphism.Alt
open import Cubical.Categories.Presheaf.Representable hiding (Elements)
open import Cubical.Categories.Presheaf.Representable.More
open import Cubical.Categories.Presheaf.More
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Functor
open import Cubical.Categories.Displayed.Functor.More
open import Cubical.Categories.Displayed.BinProduct
open import Cubical.Categories.Displayed.Presheaf.Uncurried.Base
open import Cubical.Categories.Displayed.Presheaf.Uncurried.UniversalProperties
open import Cubical.Categories.Displayed.Presheaf.Uncurried.Constructions
open import Cubical.Categories.Displayed.Presheaf.Uncurried.Representable
open import Cubical.Categories.Displayed.Limits.CartesianClosedV
open import Cubical.Categories.Displayed.Constructions.BinProduct.More
open import Cubical.Categories.Displayed.Constructions.Graph.Presheaf
open Category
open Functor
open PshHom
open PshIso
open Categoryᴰ
private
variable ℓC ℓC' ℓD ℓD' ℓE ℓE' ℓCᴰ ℓCᴰ' : Level
module _
(C : Category ℓC ℓC')
(ℓP ℓPᴰ : Level)
(Cᴰ : Categoryᴰ C ℓCᴰ ℓCᴰ')
where
private
PSH = PRESHEAF C ℓP
PRESHEAFᴰ : Categoryᴰ (PRESHEAF C ℓP) _ _
PRESHEAFᴰ .ob[_] P = Presheafᴰ P Cᴰ ℓPᴰ
PRESHEAFᴰ .Hom[_][_,_] = PshHomᴰ
PRESHEAFᴰ .idᴰ = idPshHomᴰ
PRESHEAFᴰ ._⋆ᴰ_ = _⋆PshHomᴰ_
PRESHEAFᴰ .⋆IdLᴰ {f = α} {yᴰ = Qᴰ} αᴰ =
makePshHomᴰPathP _ _ _ (funExt₂ λ _ _ → Qᴰ.rectify {e = refl} refl)
where
module Qᴰ = PresheafᴰNotation Cᴰ _ Qᴰ
PRESHEAFᴰ .⋆IdRᴰ {yᴰ = Qᴰ} _ =
makePshHomᴰPathP _ _ _ (funExt₂ λ _ _ → Qᴰ.rectify {e = refl} refl)
where
module Qᴰ = PresheafᴰNotation Cᴰ _ Qᴰ
PRESHEAFᴰ .⋆Assocᴰ {wᴰ = Rᴰ} _ _ _ =
makePshHomᴰPathP _ _ _ (funExt₂ λ _ _ → Rᴰ.rectify {e = refl} refl)
where
module Rᴰ = PresheafᴰNotation Cᴰ _ Rᴰ
PRESHEAFᴰ .isSetHomᴰ = isSetPshHom _ _