{-# OPTIONS --lossy-unification #-}
module Cubical.Categories.Displayed.Constructions.Reindex.Exponential where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.Dependent
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.HLevels.More
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Transport
import Cubical.Data.Equality as Eq
open import Cubical.Data.Sigma
open import Cubical.Data.Unit
open import Cubical.Categories.Category.Base
open import Cubical.Categories.More
open import Cubical.Categories.Functor
open import Cubical.Categories.NaturalTransformation
open import Cubical.Categories.NaturalTransformation.More
open import Cubical.Categories.NaturalTransformation.Reind
open import Cubical.Categories.Constructions.Fiber
open import Cubical.Categories.Constructions.TotalCategory
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Limits.Terminal.More
open import Cubical.Categories.Limits.BinProduct.More
open import Cubical.Categories.Limits.Cartesian.Base
open import Cubical.Categories.Presheaf
open import Cubical.Categories.Presheaf.Morphism.Alt
open import Cubical.Categories.Presheaf.Constructions.BinProduct
open import Cubical.Categories.Presheaf.Constructions.Reindex
open import Cubical.Categories.Presheaf.Constructions.Unit
open import Cubical.Categories.Presheaf.Representable.More
open import Cubical.Categories.FunctorComprehension.Base
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Functor
open import Cubical.Categories.Displayed.Functor.More
open import Cubical.Categories.Displayed.BinProduct
open import Cubical.Categories.Displayed.Constructions.BinProduct.More
open import Cubical.Categories.Displayed.Constructions.Graph.Presheaf
open import Cubical.Categories.Displayed.Constructions.Reindex.Base
open import Cubical.Categories.Displayed.Constructions.Reindex.Cartesian
open import Cubical.Categories.Displayed.Constructions.Reindex.Fibration
open import Cubical.Categories.Displayed.Constructions.Reindex.Properties
open import Cubical.Categories.Displayed.Constructions.Reindex.UniversalProperties
open import Cubical.Categories.Displayed.HLevels
open import Cubical.Categories.Displayed.Limits.CartesianV'
open import Cubical.Categories.Displayed.Limits.ClosedV
import Cubical.Categories.Displayed.Reasoning as HomᴰReasoning
open import Cubical.Categories.Displayed.Presheaf.Uncurried.Base
open import Cubical.Categories.Displayed.Presheaf.Uncurried.Constructions
open import Cubical.Categories.Displayed.Presheaf.Uncurried.Constructions.Exponential
open import Cubical.Categories.Displayed.Presheaf.Uncurried.Representable
open import Cubical.Categories.Displayed.Presheaf.Uncurried.UniversalProperties
private
variable
ℓB ℓB' ℓBᴰ ℓBᴰ' ℓC ℓC' ℓCᴰ ℓCᴰ' ℓD ℓD' ℓDᴰ ℓDᴰ' ℓE ℓE' ℓEᴰ ℓEᴰ' ℓP ℓPᴰ ℓQ ℓQᴰ : Level
open Category
open Functor
open Functorᴰ
open NatTrans
open NatIso
open PshHom
open PshIso
module _ {C : Category ℓC ℓC'} {D : Category ℓD ℓD'}
{Dᴰ : Categoryᴰ D ℓDᴰ ℓDᴰ'}
(F : Functor C D) where
private
module C = Category C
module D = Category D
module DR = Reasoning D
module Dᴰ = Fibers Dᴰ
module F*Dᴰ = Fibers (reindex Dᴰ F)
reindexExponentialⱽ : ∀ {x} (Fxᴰ : LRⱽObᴰ Dᴰ (F ⟅ x ⟆)) (Fyᴰ : Dᴰ.ob[ F ⟅ x ⟆ ])
→ Exponentialⱽ Dᴰ Fxᴰ Fyᴰ
→ Exponentialⱽ (reindex Dᴰ F) (LRⱽObᴰReindex F Fxᴰ) Fyᴰ
reindexExponentialⱽ {x} Fxᴰ Fyᴰ Fxᴰ⇒ⱽFyᴰ = Fxᴰ⇒ⱽFyᴰ .fst
, reindexRepresentableIsoⱽ Dᴰ F x (Fxᴰ⇒ⱽFyᴰ .fst)
⋆PshIsoⱽ reindPshIso (reindex-π-/ Dᴰ F x) (Fxᴰ⇒ⱽFyᴰ .snd)
⋆PshIsoⱽ reindPsh-square (reindex-π-/ Dᴰ F x) (×LRⱽPshᴰ (LRⱽObᴰ→LRⱽ Dᴰ Fxᴰ)) (×LRⱽPshᴰ (LRⱽReindex F (LRⱽObᴰ→LRⱽ Dᴰ Fxᴰ))) (reindex-π-/ Dᴰ F x) (Dᴰ [-][-, Fyᴰ ]) (reindex-×LRⱽPshᴰ-commute F (LRⱽObᴰ→LRⱽ Dᴰ Fxᴰ))
⋆PshIsoⱽ reindPshIso (×LRⱽPshᴰ (LRⱽReindex F (LRⱽObᴰ→LRⱽ Dᴰ Fxᴰ))) (invPshIso (reindexRepresentableIsoⱽ Dᴰ F x Fyᴰ))
⋆PshIsoⱽ reindNatIsoPsh (×LRⱽPshᴰ-Iso (LRⱽReindex F (LRⱽObᴰ→LRⱽ Dᴰ Fxᴰ)) (LRⱽObᴰ→LRⱽ (reindex Dᴰ F) (LRⱽObᴰReindex F Fxᴰ)) (invPshIso (reindexRepresentableIsoⱽ Dᴰ F x (LRⱽObᴰReindex F Fxᴰ .fst)))) (reindex Dᴰ F [-][-, Fyᴰ ])
ExponentialsⱽReindex :
∀ (allLRⱽ : AllLRⱽ Dᴰ)
→ Exponentialsⱽ Dᴰ allLRⱽ
→ Exponentialsⱽ (reindex Dᴰ F) (AllLRⱽReindex F allLRⱽ)
ExponentialsⱽReindex allLRⱽ expsⱽ xᴰ yᴰ = reindexExponentialⱽ (xᴰ , allLRⱽ xᴰ) yᴰ (expsⱽ xᴰ yᴰ)